
Magyar Kutatók 8. Nemzetközi Szimpóziuma
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 573

Architecture of an In-Memory Transformation
Engine

Tamás Vajk, Gergely Mezei, Hassan Charaf
{tamas.vajk, gmezei, hassan}@aut.bme.hu

Abstract: General purpose modeling languages, such as UML, had a great impact on
reliable software engineering. After realizing the need for automated code generation from
models, the more appropriately customizable Domain-Specific Languages emerged. The
creation of these languages requires metamodel-based environments, in which new
languages can be designed in a visual way with minimal amount of coding. Translations
between different domain-specific models can be performed automatically by model
transformation systems if the necessary conversion steps are defined. Usually, model
transformation systems store their models in memory, however in this way the model
distribution is hardly possible. The performance of database-based modeling environments
is considerably lower than those of in-memory versions. This paper introduces the steps of
converting a database-based modeling system into a modeling environment that is able to
work in both database and memory without having to duplicate the previously implemented
algorithms.

Keywords: metamodeling, model transformation, VMTS

1 Introduction

Modeling languages, such as the Unified Modeling Language (UML) [1], are
among the most frequently used abstraction methods in reliable software
engineering. UML is a general-purpose modeling language that includes a
graphical notation used to create an abstract model of a system. It is important to
notice that UML stands for the different types of diagrams and for the model
itself. UML diagrams are used to visualize a model; from the software
development point of view, UML models are much more important than their
representations, because the model can grant the preferred level of abstraction in
defining the application details. By forcing the developer to design an appropriate
model for the application, the overall quality of the implemented system is
improved. Although the creation of UML-based modeling systems had a great
impact on software development, UML has a few weaknesses, which are caused
by having an imprecisely specified abstract syntax and being a too general-
purpose modeling language, which aims to model all possible domains. These

T. Vajk et al.
Architecture of an In-Memory Transformation Engine

 574

problems make source code generation hardly possible. In general, this means that
there are cases when UML-based modeling tools are not flexible and not powerful
enough to express all the constraints which arise in a special domain. In these
cases, more flexible languages are needed to handle the specialties of the selected
domain.

Using Domain-Specific (Modeling) Languages (DSMLs or DSLs) [2] is a widely
adopted way to overcome these problems. DSLs tend to support a higher-level of
abstraction, than general-purpose modeling languages, therefore, they require less
effort and fewer low-level details to specify a given system. Since DSLs contains
only domain-specific model elements, they allow precise code generation for the
given field. Being free from the manual creation and maintenance of source code
means that DSLs can significantly improve developer productivity. Obviously, to
achieve this high productivity, one needs to have a proper modeling language for
the domain under investigation. To define a language, another language is needed
to specify the definition in. The language used in specifying a model is often
called a metamodel; hence the language for defining a modeling language is a
metametamodel. Metamodeling [3] is a user-friendly, graphically supported way
of avoiding manually coding the DSLs unnecessarily. Metamodeling tools give
the ability to edit a metamodel, which defines the rules of a model. The
metamodel determines which types of objects are allowed during the modeling
process and what kind of attributes or relations they can have. A metamodel can
also contain textual constraints that should be enforced by the environment in the
modeling process. The two-layer model-metamodel system can be extended to an
arbitrary layered one. For instance, if we define a metamodel for the UML class
diagram, we create a three-layer instantiation model, in which the topmost layer is
the defined metamodel, the class diagram represents the middle layer, while the
lowest modeling layer is the object diagram. Notice that in this chain, the middle
layer behaves as an instance of the upmost layer, and – at the same time – it is the
metamodel of the object diagram.

After being able to create customizable models based on metamodels, the natural
need to transform a model into another arises. Model transformation is the process
of converting a model conforming to a metamodel to another model, which
conforms to another metamodel. The first metamodel is called the source
metamodel, the second is referred to as the target metamodel. (The two
metamodels do not necessarily differ.) Additionally, sometimes it is useful to
handle transformations sequentially as a chain of transformation rules in which the
output of one transformation is the input of another. This method of translating a
model into another is not trivial, QVT [4] has been proposed by the Object
Management Group to handle this task.

As it can be seen a model transformation environment, such as the Visual
Modeling and Transformation System [5], has to allow flexible metamodel-based
software modeling and also needs to be able to process and execute
transformations on the models created.

Magyar Kutatók 8. Nemzetközi Szimpóziuma
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 575

2 Related Work

Visual Modeling and Transformation System (VMTS) [5] is an n-layer
metamodeling and model transformation environment. VMTS has been fully
implemented in Microsoft .NET Visual C#. The system benefits from the results
of the mathematical background of formal languages, graph theory, category
theory, graph rewriting and metamodel-based software model transformation. In
VMTS, metamodel rules are automatically forced when editing models. Model
transformations are based on graph rewriting techniques. A domain-specific
control flow language is used to specify the transformation-steps and rewriting
rules are also specified by a visual language. During the model transformation
process, the tool facilitates the validation of the constraints specified in the
transformation rules. Moreover, VMTS supports OCL-based [6] textual
constraints, which can be attached to metamodel elements. Models and
transformation rules are formalized and stored as directed, labeled graphs. VMTS
consist of several parts as shown in Fig. 1.

Figure 1
The schematic structure of VMTS

The Attributed Graph Architecture Supporting Inheritance (AGSI) [5] offers a
high-level graph interface for the other components to reach the data repository.
As previously mentioned, VMTS handles the models as graphs; every graph is
stored in the underlying relational database. In this way, the models can be
reached from different computers at the same time, thus a team can work on the
same project from different locations.

T. Vajk et al.
Architecture of an In-Memory Transformation Engine

 576

3 Contribution and Improvement

In a modeling tool, such as VMTS, storing the graphs in a database seems to be a
good idea; however, in several cases it means a huge inconvenience. Database-
based storage raises performance issues in several algorithms as every time a
model element is needed by the system for a calculation, the framework needs to
query the data from the database. Thus, comparing the performance of an
algorithm to other transformation systems is hardly possible in this way. Therefore
in-memory data representation is highly needed in VMTS. Obviously, the
advantages of the database storage should not be lost in the new system, thus the
new solution has to be compatible with the previous one. Furthermore, since the
algorithms have already been implemented for the database version, the in-
memory solution should not duplicate the code of the algorithms. The following
sections introduce the architecture of the developed in-memory transformation
system, called AGSI Compact.

3.1 Model Elements

In AGSI Compact, we decided to use a common interface for reaching the model
elements with abstract base classes, which have their mode-dependent (DB or
Compact) derived classes. Fig. 2 depicts the hierarchy of the base classes.

As previously mentioned, VMTS utilizes graphs as the mathematical background
for its models. Vertices and edges are represented in the system by AgisNodeBase
and AgsiEdgeBase classes. An edge can connect two nodes in the system, as it
seems obvious. However, a third model element is also present in the system,
named AgsiAssociationEdgeBase, which acts as an association node defined in
UML. A node and an edge can be connected by an association edge, which is
rarely needed, however, there are cases when software modeling tasks cannot be
solved without this abstraction. The three low level classes are generalized into a
model element class, AgisModelElementBase, which allows the non-
differentiating handling of these classes. In VMTS, the creation of nested,
hierarchical models is possible, a node may contain any kind of model elements,
therefore, the AgsiNodeBase implements the IAgsiContainer interface, which
declares functions for reaching the child elements.

Creating the abstraction of a modeling task requires a model class, which
represents an aspect of the problem, or the whole problem. This model class,
AgsiModelBase, serves as a container for the nodes and edges created during
modeling, thus it implements the IAgsiContainer interface. Furthermore, as a
model represents a whole modeling task, it also implements the IAgsiPackage
interface. However, as models have their metamodels and properties as well, it
derives from the same class as the model elements, the AgsiModelItemBase.

Magyar Kutatók 8. Nemzetközi Szimpóziuma
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 577

Figure 2

Hierarchy of the base classes

On the next level, three classes are defined (AgsiModelItemBase, AgsiProjectBase,
AgsiDiagramBase), which act in different ways. Recall that the
AgsiModelItemBase class is responsible for the representation of metamodel-based
items. The project class acts as a whole task, which may contain several different
modeling subtasks. And finally, the AgsiDiagramBase is the class that is
responsible for the visualization of the models. These three topmost classes derive
from the AgsiItemBase root class, which only holds a unique identifier and a name
as attributes.

3.2 Derived Classes

The general architecture of the classes has been introduced in the previous section.
Recall that each abstract base class has its implementations on both platforms
(DB, Compact). In this section, the AgsiNode classes are presented; however, all
the other classes follow the same implementation concept. Fig. 3 shows the
AgsiNodeBase, AgsiNodeCompact and AgsiNodeDB versions of the node class.
Recall that VMTS is written in Microsoft .NET C# [7], thus the implementation
may be based on C# specific constructs, such as properties; however, the
introduced solutions may be applied in any object-oriented language.

T. Vajk et al.
Architecture of an In-Memory Transformation Engine

 578

The obvious difference between the Compact and the database version is that the
Compact can keep every data in memory, while the database version has to query
everything from the underlying database, even if two consecutive requests need
the same attribute value. The base class defines protected member variables, thus
those are available in both derived versions. The Compact version utilizes these
in-memory variables, however the DB version overrides the defined properties,
which retrieves or sets the values. It performs a database query to the appropriate
node row in the database every time a value is needed. The unique identifier of the
node is stored in the _node protected member variable defined in the AgsiNodeDB
class.

Figure 3

AgsiNode classes

On one hand, the constant database queries decrease the performance in the DB
version and it is hardly possible to achieve any increase because the bottleneck of
the system is the database. On the other hand, in case of the in-memory version,
the performance can be increased towards, for example with hashtables. For
instance, in AGSI Compact, a node has not only a list with the edges connected,
but has several hashtables indexed by the type of edges. This means that if we
want to find a connected inheritance edge, then we have to check the hashtable of
inheritance edges only. Caching hashtables are automatically created and
maintained by the environment.

Magyar Kutatók 8. Nemzetközi Szimpóziuma
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 579

Every item has a delete() method, which removes the actual element from the
system. Naturally, if an element is deleted, the contained elements should also be
deleted, and the linked edges as well. The corresponding hash tables have to be
maintained in the system, thus the appropriate entries have to be deleted.

3.3 Reaching the Model Elements

It has been shown how each model element behaves in both versions of the
system. The AGSI framework has to be connected to several parts of VMTS,
which have the tasks of creating/retrieving models, nodes, etc.

To handle these kind of accessibility issues, factory classes have been utilized,
which implement the IAgsiFactory interface. Fig. 4 shows the interface with its
methods.

Figure 4

IAgsiFactory interface

All of the ‘create’ functions work as a factory method, thus, if a requested model
item does not exist, then the method creates one with the given identifier. In this
way the new and existing items can be handled transparently.

Obviously, in case of the in-memory version it would be difficult to retrieve all the
created nodes without a list of the nodes. These requests which concern all of the
model items are also placed in an interface, which is implemented by a class for
the Compact and DB versions respectively.

As previously only database-based models were supported in VMTS, the
identification of a model element was simply based in unique identifiers. In this
new multi-mode version, this would not be appropriate, the identifiers have to be
changed to base class objects. In this way, the system does not have to know
which mode is running currently.

T. Vajk et al.
Architecture of an In-Memory Transformation Engine

 580

4 Performance

The best way of comparing the performance of our system to others is choosing a
benchmark test and run it on several different transformation systems. The basis of
the comparison was the case study of [8].

Fig. 5 shows the time required by matching a specific pattern in different
transformation tools. The benchmark model and transformation is borrowed form
[8], from which we utilized the case of long transformations (long TS) without
optimization. The results are measured in ms, for a single application of the rules.

Model size AGG PROGRES Fujaba DB-
based

VMTS
DB

VMTS
Compact

21 1.86 0.62 0.15 4.15 1326 0.21
5001 1116.34 269.58 0.26 20.47 30000 1.2

Figure 5
Performance of model transformation approaches [8]

According to the results, VMTS DB was very slow because of the underlying
relational database. The results show that VMTS Compact requires approximately
three orders of magnitude less time to apply the same transformation as VMTS
DB. Furthermore, the tests have shown that VMTS (based on the AGSI Compact
Framework) is one of the fastest transformation engines.

5 Future Work

Future work includes several tasks which have not been implemented fully in the
Compact version. As the AGSI Compact Framework was created primarily to
increase the performance of the system and support parallel model transformations
[9], no visualization data is supported in the current version. In the database
version, the visualization is based on XML data, which stores the visualization
information, such as current position, size, and color of each model element. The
implementation of this can be expected in the near future.

The switching between modes is not supported either. This means, that currently
the user has to choose between the two modes (DB, Compact) before the
application is started. It would be highly useful to be able to switch between the
modes at run-time. In this case, the user could modify the shared model in the
database and – after changing to Compact mode – the transformation could be run
in memory, which would mean better performance. In this way, the advantages of
both modes could be kept in a single system. Any further work which is not
dependent on a specific mode will be implemented on top of the common

Magyar Kutatók 8. Nemzetközi Szimpóziuma
8th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 581

interface; therefore both versions will become available for the same
implementation of the algorithm.

Conclusions

This paper introduced a database-based model transformation system, Visual
Modeling and Transformation System developed at our department. The paper has
shown how this system can be transformed into another one which supports both
database and in-memory use without having to duplicate previously existing code.
Naturally, both modes have their advantages, such as in case of database mode,
one does not need to care about the distribution of the created models, and several
users can modify the same model at the same time. While in case of in-memory
use, higher performance of model transformations can be achieved as one of the
main bottlenecks of the system is eliminated. Section 4 can be considered part of
the conclusion as it shows the achieved performance raise in the system. By
eliminating the database from the system, the transformations are executed in
three orders of magnitude less time then previously.

References

[1] Unified Modeling Language, http://www.uml.org, September 2007

[2] Mezei, G., Levendovszky, T., Charaf, H.:A Domain-Specific Language for
Visualizing Modeling Languages, In Proceedings of the Information
Systems Implementation and Modelling conference, ISIM, Prerov, Czech
Republic, 2006, pp. 67-74

[3] Colin Atkinson, Thomas Kühne: The Role of Metamodeling in MDA,
October 2002

[4] Object Management Group: MOF QVT Specification,
http://www.omg.org/docs/ptc/05-11-01.pdf, September 2007

[5] Visual Modeling and Transformation System, http://vmts.aut.bme.hu,
September 2007

[6] Object Management Group: Object Constraint Language Specification,
http://www.omg.org/docs/ptc/03-10-14.pdf, September 2007

[7] Microsoft Developer Network,
http://msdn2.microsoft.com/, September 2007

[8] Varró, G., Schürr, A., Varró, D.: Benchmarking for Graph Transformation.
In Proceedings of IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC 05), Dallas, Texas, USA, 2005, pp. 79-88

[9] Mezei, G.: Supporting Transformation-Level Parallelism in Model
Transformations. In Proceedings of the Automation and Applied Computer
Science Workshop, Budapest, Hungary, 2007

