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Abstract: Hybrid solar vehicles (HSVs), having multiple main energy sources and a 
photovoltaic panel, are an attractive alternative to conventional vehicles. The paper 
presents a study on modelling a series HSV and minimization of the energy consumption in 
such a vehicle. The presented model is used for the development of optimal control 
strategies which minimize the vehicle’s fuel consumption. The presented control strategy to 
minimize fuel consumtion is Model Predictive Control (MPC). Simulations were performed 
using Matlab – Simulink for testing the model and the control strategy. 
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1 Introduction 

Hybrid electric vehicles (HEVs), having multiple main energy sources, are an 
attractive alternative to conventional vehicles. These energy sources are the 
conventional fuel tank and a battery. If a photovoltaic panel is also added, a 
Hybrid Solar Vehicle (HSV) is obtained. HSVs can be seen as a transition from 
conventional vehicles to fully electric vehicles. HSVs can have different 
architectures, depending on the imposed requirements [1], [2]. Basic drivetrain 
structures for HSVs are: series, parallel, series/parallel and complex hybrids. 
Series HSVs are optimal solutions for urban traffic applications where the vehicle 
starts and stops frequently during a drive cycle. So regenerative braking can be 
often used, which substantially improves the fuel economy of the vehicle. Since 
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the target of the research is optimization of fuel consumption in case of urban 
drive cycles, a series architecture was chosen for this study, this proving to be 
optimal in this case. A basic diagram of the series HSV is depicted in Figure 1. 

 
Figure 1 

Series hybrid architecture 

The HSV model is based on the component modelling that takes into accout fuel 
minimization aspects. Model Predictive Control (MPC) is applied for fuel 
minimization. The numerical data used for simulation is taken from the literature. 

2 Series Hybrid Architecture Component Modelling 

2.1 Introduction 

The architecture of a series HSV is depicted in Figure 1. The fuel consumption 
minimization relevant components are as follows: the electric motor (EM) which 
drives the wheels or works as a generator during regenerative braking; the 
electrical energy for the EM is delivered by the electric generator (EG); the 
photovoltaic (PV) panel and battery; the electric generator is in rigid connection 
with the internal combustion engine (ICE). The vehicle management unit (VMU) 
is used for control and coordination of the components. 

2.2 Electric Motor 

For electric vehicles and HEV driving systems the Brushless DC machines 
(BLDC-m) are often used [3]. They can work both in motor and generator 
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regimes. The BLDC can function in four quadrants: forward motoring, forward 
breaking, reverse motoring and reverse braking [4]. 

A qualitative modelling is achieved by presenting the characteristic steady-state 
curves (Figure 2), for normalized values of the torque and speed, for the first 
quadrant of forward motoring. The steady-state speed-torque curves 
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Figure 2 

Torque-speed characteristics in normalized values 

Here nn is the nominal resolution. The power balance between the electrical and 
mechanical powers is (2). 

Pel=Pm/η (2) 

The efficiency balance is valid also at breaking. 

2.3 Photovoltaic Panel 

The PV panel is independent from the other components. It can be chosen so that 
it has maximum efficiency and a maintenance free robust structure [5]. The model 
used for PV panel power is: 
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Where 0I  is the output current, U is the output voltage, maxU is the maximum 
possible output voltage, K and UT are parameters to be calculated (they are λ 
insolation dependent), T is the actual cell temperature. 
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2.4 Battery 

A relatively complex battery model is presented, which models the battery as a 
real voltage generator considering the change in open circuit voltage when the 
battery state of charge (SOC) changes. Based on [6] the efficiency of the battery is 
modelled as follows: 
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With bnP  meaning nominal battery power. In this type of formulation positive bP  
(battery power) means battery discharge, while negative bP  means battery charge. 
The overall structure of the battery model is presented in Figure 3. 

 
Figure 3 

Battery simulation structure 

The resultant battery model reflects all the important characteristics of a battery. 

2.5 Internal Combustion Engine and Electric Generator 

The electric generator (EG) and internal combustion engine (ICE) must be fitted to 
the electric motor and to each other using the maximum efficiency region for both 
of them. This way the EG can be described by a single characteristic curve, 
between input mechanical and output electrical power (Figure 4). 

 
Figure 4 

Electric generator characteristic curve 
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For the ICE, the quotient of output and input power is the ICE efficiency. The 
efficiency map is plotted against torque and angular velocity values (Figure 5). 

 
Figure 5 

ICE efficiency map 

2.7 Vehicle Model and Drive Cycle 

The resulting vehicle model is a non-linear model. In order to apply MPC a 
linearization was performed, keeping the state variables of the system [7]. The 
resulting linear model has the following inputs, outputs and states: 

o State variables: -  x1: ICE power state, 

- x2: SOC, 

- x3: EM power state; 

o Inputs: -  u1: ICE power, 

         -  u2: Battery nominal power; 

o Controlled outputs: -  o1: Drive power, 

-  o2: SOC, 

-   o3: Fuel rate; 

o Measured disturbance input: - dm: PV panel power. 

In this model the PV power is considered a measured disturbance (depending on 
the actual insolation which is an external factor). The numerical data was taken 
from the literature, based on real data [6], and is presented in the chapter dealing 
with control. The simulations were performed for the New European Drive Cycle 
(NEDC), depicted in Figure 6. 
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Figure 6 

New European Drive Cycle 

3 Fuel Consumption Minimization using Predictive 
Control 

3.1 Introduction 

The task presented in this paragraph is to minimize the fuel consumption of a HSV 
during a given driven cycle (NEDC), while the SOC is kept between well defined 
boundaries: the minimal and maximal SOC values are 0.6 and 0.8, from [8]. 

The applied control strategy for the series HSV architecture is Model Predictive 
Control (MPC), as used also for a hybrid vehicle in [9],[10]. MPC is an advanced 
control strategy which had spread significantly during the past years in industry as 
well, due also to the computational capacity of nowadays machines [11], [12], 
[13]. 

3.2 Problem Formulation and Simulation Results 

The numerical values for the HSV are as follows (resulting from literature, based 
on real data [7]): 
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A sampling time of Ts=0.001 sec was used. The constraints acting upon the 
system are: 
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A quadratic cost function is assumed that has the following form: 
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Where )(ˆ kiky + are the predictions, at time k, of the output y, )( kikr + is the 
reference trajectory vector, )(ˆ kiku +Δ are the changes of the future input vector. 

The tuning parameters of the cost function are: the prediction horizon N=10 and 
the control horizon Nu=4. Constant Q and R weights were chosen: 
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The values of the weighting factors were chosen taking into account their inpact 
on the state variable which they are referring to. In this sense, the SOC in highly 
weighted, since one of the main tasks is to keep its value as close as possible to 
0.7, the other states are more lighter. The control inputs are not so severly 
weighted in this case. 
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Simulations were performed, the presented one consists in applying the NEDC 
drive cycle (Figure 6) as reference, transposed into its equivalent of drive power 
need for r1. Also, for the SOC the constant reference of r2=0.7 was prescribed, the 
third reference was r3=0 (for fuel rate). 

Simulation results are presented in Figure 7 (Pd reference tracking), Figure 8 
(SOC and total fuel) and Figure 9 (control signals ICE power and battery nominal 
power). 
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Figure 7 

Pd reference tracking 
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Figure 8 

SOC and total fuel consumption 
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Figure 9 

ICE power and nominal battery power 

It can be seen that the Pd drive power reference tracking is ensured by the 
predictive controller. The fuel consumption is between the global optimum value 
and the value calculated without controller, as expected. 

For the SOC it can be remarked that a certain degree of constraint violation in the 
SOC level. This is due to the fact that the optimization was performed only for a 
limited horizon. In this particular case, a rise in the SOC can be achieved during 
parking, when the PV panel can function and load the battery. 

The battery nominal power is varying between the prescribed bounds (-26000 W 
and 14000 W). In the time interval of [1000 , 1100] the drive cycle should 
necessitate more power, but due to the hard constraint on the MPC controller, only 
14000 W are used. 

Conclusions 

The paper presents a modelling for a series Hybrid Solar Vehicle (HSV) based on 
fuel optimization aspects, followed by Model Predictive Control (MPC) for fuel 
consumption minimization. The model of the HSV is based on modelling its 
components that are necessary for the control, from the point of view of power 
balance. Then MPC is applied using the MPC Toolbox of Matlab. Simulations 
were performed so a pre-defined standars drive cycle, namely the New European 
Drive Cycle (NEDC), in this case both reference tracking and fuel consumption 
minimization give promising results. MPC strategies can be applied also for real 
HSVs as well. The simulations were performed using the Matlab-Simulink 
environment. 
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