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Abstract: Lattice-ordered monoids are important backgrounds and algebraic foundations 
of residuum in general. The t-norm based lattices are investigated widely in fuzzy models, 
but in recent time while researching new approximate reasoning methods in soft computing 
based models and fuzzy models, the investigations are focused on new types of operators, 
like uninorms. It is necessary to find and define correct residual operators, based on these 
operators, namely it can be the generalization of the already  introduced residuum for t-
norms. 
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1 Introduction 

In complex systems with insufficient information about objects and there 
properties, fuzzy models seek to give acceptable results close to human way of 
thinking. One of the important components in a fuzzy system is the approximate 
reasoning process, which is usually based on residuum and implication. Lattice-
ordered monoids are important backgrounds and algebraic foundations of 
residuum in general. The t-norm based lattices are investigated widely in fuzzy 
models, but in recent time researching new approximate reasoning methods in soft 
computing based models and fuzzy models, the investigations are focused on new 
types of operators, like uninorms. It is necessary to find and define correct residual 
operators, based on those operators, namely it can be the generalization of the 
introduced residuum for t-norms. Taking known algebraic structures as the basic 
for this theory, many other properties of this structure can be generalize. 

In this paper the residuated l-monoid for left continuous uninorm is introduced as 
the first step to the generalization. 
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2 Preliminares 

In many-valued logics since modeling ‘if … then …’ rule with fuzzy predicates is 
based on fuzzy implications, it is essential to study their mathematical properties. 
In fuzzy logic, the basic theory of connectives and, or, not is well developed and 
their functional models (t-norms, t-conorms and strong negations) are widely 
accepted [1]. However, there is no such clear, and, in some sense, unique way of 
defining fuzzy implications [2]. 

Implications 
Definition 1 

An implication is a function [ ] [ ]1,01,0: 2 →I  with following properties> 

(I1) if zx ≤  then ( ) ( )yzIyxI ,, ≥  for [ ]1,0∈∀y , 

(I2) if ty ≤  then ( ) ( )txIyxI ,, ≤  for [ ]1,0∈∀x , 

(I3) ( ) 1,0 =xI  for [ ]1,0∈∀x , 

(I4) ( ) 11, =xI  for [ ]1,0∈∀x , 

(I5) ( ) 00,1 =I . 

The natural interpretations of those implication axioms are described in [3]. Some 
further axioms for implication are required in different applications (see [4] and its 
reference list). 

(I6) ( ) xxI =,1  for [ ]1,0∈∀x , 

(I7) ( )( ) ( )( )zxIyIzyIxI ,,,, =  for [ ]1,0,, ∈∀ zyx , 

(I8) yx ≤  if and only if ( ) 1, =yxI  for [ ]1,0, ∈∀ yx , 

(I9) ( ) ( )xNxI =0,   is a strong negation, 

(I10) ( ) yyxI ≥,  for [ ]1,0, ∈∀ yx , 

(I11) ( ) 1, =xxI  for [ ]1,0∈∀x , 

(I12) ( ) ( ) ( )( )xNyNIyxI ,,1 =  with a strong negation N, and for [ ]1,0, ∈∀ yx , 

(I13) I  is a continuous function. 

There exist some interdependence among these axioms [5], and in applications 
usually there is no need for all of these axioms at the same time. 
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Implications by T-norms, T-conorms and Negations 
Definition 2 

An S-implication associated with a t-conorm S and a strong negation N is defined 
by: 

(i) ( ) ( )( )yxNSyxI NS ,,, =  

An R-implication associated with a t-norm T is defined by 

(ii) ( ) ( ){ }yzxTzyxIT ≤= ,sup,  

A QL-implication associated with a t-norm T, a t-conorm S and a strong negation 
N is defined by 

(iii) ( ) ( ) ( )( )yxTxNSyxI NST ,,,,, = . 

NSI ,  and TI  satisfy the conditions (I1)-(I5), thus they are implications. The idea 
behind (i) is the elementary logical rule qpqp ∨¬⇔→ . QL-implication, in 
general, violates the property (I1). 

In [5] we can find a set of conditions (from (I1) to (I13)), which are satisfied by 
the implications from Definition 2, i.e., a function [ ] [ ]1,01,0: 2 →I  is an R-
implication based on a left-continuous t-norm if and only if I satisfies conditions 
(I2), (I7), (I8) and ( ),.xI  is right-continuous for any fixed [ ]1,0∈x . 

Although ( ) ( )yxTyxI ,, =  (T is a t-norm), operators do not verify the properties of 
the implications they are used as a implication model in many applications in 
fuzzy logic, for example as Mamdani ‘implication’. 

3 Lattice-ordered Monoids and Left Continuous 
Uninorms and T-norms 

Let L be a non-empty set. Lattice is a partially (totally) ordered set which for any 
two elements Lyx ∈,  also contains their join yx∨  (i.e., the least upper bound of 
the set { }yx, ), and their meet yx∧  (i.e., the greatest lower bound of the set 

{ }yx, ), denoted by ( )≺,L . Secondly, ( )∗,L  is a semi-group with the neutral 
element. Following [6] and [7] let the following be introduced: 

Definition 3 

[11]  Let ( )≺,L  be a lattice and ( )∗,L  a semi-group with the neutral element. 
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(i) The triple ( )≺,,∗L  is called a lattice-ordered monoid (or an l-monoid) 
if for all x,y,z∈L we have 

(LM1) ( ) ( ) ( )zxyxzyx ∗∨∗=∨∗  and 

(LM2) ( ) ( ) ( )zyzxzyx ∗∨∗=∗∨ . 

(ii) An ( )≺,,∗L  l- monoid is said to be commutative  if the semi-group 
( )∗,L  is commutative. 

(iii) A commutative ( )≺,,∗L  l- monoid is said to be commutative, 
residuated l-monoid  if there exists a further binary operation ∗→  on 

L, i.e., a function LL →→∗
2:  (the ∗ residuum), such that for all x,y,z 

∈L we have 

(Res)  zyx ≺∗ if and only if ( )zyx *→≺ . 

(iv) An l-monoid ( )≺,,∗L  is called an integral if there is a greatest 
element in the lattice ( )≺,L  (often called the universal upper bound) 
which coincides with the neutral element of the semi-group ( ).,∗L  

Obviously, each l-monoid ( )≺,,∗L  is a partially ordered semi-group, and in the 
case of commutativity the axioms (LM1) and (LM2) are equivalent.  

In the following investigations the focus will be on the lattice [ ]( )≤,1,0 , we will 
usually work with a complete lattice, i.e., for each subset A of L its join AV  and its 

AΛ exist and are contained in L. In this case, L always has a greatest element, also 
called the universal upper bound. 

Example 1 

If we define [ ] [ ]1,01,0: 2 →∗  by 

( )
( )⎩

⎨
⎧ ≤+

==∗
otherwiseyx

yxifyx
yx

,max
1,min

maxmin
5.0  

then [ ]( )≤∗,,1,0  is a commutative, residuated l-monoid, and the *-residuum is 
given by 

( )
( )⎩

⎨
⎧

−
≤−

=→∗ otherwiseyx
yxifyx

yx
,1min
,1max

. 

It is not an integral, since the neutral element is 0.5. 
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The operation * is an uninorm, and special type of distance based operators, 
maximum distance minimum operator, with the parameter and unit element 0.5, 
[8], [9], [10]. 

The following result is on important characterization of left-continuous uninorms. 

Theorem 1 

For each function [ ] [ ]1,01,0: 2 →U  the following are equivalent: 

(i) [ ]( )≤,,1,0 U  is a commutative, residuated l-monoid, with a neutral element 

(ii) U is a left continuous uninorm. 

In this case the U-residuum U→  is given by 

(ResU)   [ ] ( ){ }yzxUzyx U ≤∈=→ ,1,0sup . 

Proof. It is easy to see, that [ ]( )≤,,1,0 U  is a commutative, residuated l-monoid 
with a neutral element if and only if U is a uninorm. 

Therefore, in order to prove that (i)⇒(ii), assume that  [ ]( )≤,,1,0 U  is residuated, 
fix and arbitrary sequence ( ) Nnnx ∈  in [ ]1,0  and put n

Nn
xx

∈
= sup0 . 

 Let [ ]1,00 ∈y ,  and ( )00 ,sup yxUz n
Nn∈

= . 

Obviously ( )000 , yxUz ≤ , and (ResU) implies ( ) nU xzy ≥→ 00  for all Nn∈ , 
subsequently, ( ) 000 xzy U ≥→ . 

Applying again (ResU) in the opposite direction, we obtain  ( ) 000 , zyxU ≤ . 
Because of the monotonicity of uninorm U , (U3), and based on Proposition 1.22. 
from [11], we have ( ) 000 , zyxU = , i.e., 

( ) ( ) ⎟
⎠

⎞
⎜
⎝

⎛=
∈∈

00 ,sup,sup yxUyxU n
Nn

n
Nn

 

Conversely, if the uninorm U is left-continuous, define the operation U→  by 
(ResU). Then it is clear that for all [ ]1,0,, ∈zyx , ( )zyx U→≤  whenever 
( ) zyxU ≤, . The left-continuity of U then implies ( ) zyzyU U ≤→ , , which 

together with the monotonicity (U3), ensures that U→  is indeed the U-residuum. 
◊ 

The work [9] presents general theoretical results related to residual implicators of 
uninorms, based on residual implicators of t-norms and t-conorms. 
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Residual operator RU, considering the uninorm U , can be represented in the 
following form: 

( ) [ ] ( ){ }yzxUzzyxRU ≤∧∈= ,1,0sup, . 

Uninorms with the neutral elements 0=e  and 1=e  are t-norms and t-conorms, 
respectively, and related residual operators are widely discussed [5], [12]. In [9] 
we also find suitable definitions for uninorms with neutral elements ] [1,0∈e . 

If we consider a uninorm U with the neutral element ] [1,0∈e , then the binary 
operator RU is an implicator if and only if ] [( ) ( )( )0,01, =∈∀ zUez . Furthermore RU  
is an implicator if U is a disjunctive right-continuous idempotent uninorm with 
unary operator g satisfying [ ]( ) ( )( )101,0 =⇔=∈∀ zzgz . 

The residual implicator RU  of uninorm U can be denoted by ImpU. 

Corollary 1 

Consider a uninorm U, then RU  is an implicator in the following cases: 

(i) U is a conjunctive uninorm, 

(ii) U is a disjunctive representable uninorm, 

(iii) U is a disjunctive right-continuous idempotent uninorm with unary 
operator g satisfying 

[ ]( ) ( )( )101,0 =⇔=∈∀ zzgz . 

Theorem 1. implies in a special case Proposition 2.47. from [11]: 

Corollary 2 

For each function [ ] [ ]1,01,0: 2 →T  the following are equivalent: 

(i) [ ]( )≤,,1,0 T  is a commutative, residuated integral l-monoid, 

(ii) T is a left continuous t-norm. 

In this case the T-residuum T→  is given by 

(ResT)    [ ] ( ){ }yzxTzyx T ≤∈=→ ,1,0sup . 

Because of its interpretation in [0,1]-valued logics, the T-residuum T→  is also 
called residual implication (or briefly R-implication). (see [13]) 

Example 2 

For continuous basic t-norms LPM TTT ,,  the corresponding residuum is given by 
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⎩
⎨
⎧ ≤

=→
otherwisey

yxif
yx M

1
,   (Gödel implication ), 

⎪⎩

⎪
⎨
⎧ ≤

=→ otherwise
x
y

yxif
yx P

1
  (Goguen  implication ), 

( )1,1min yxyx L +−=→    (Lukasiewicz  implication ), 

where respectively LPM →→→ ,,  are used instead of 
LPM TTT →→→ ,, . 

Remark 1 

It should be emphasized that the formula (ResT) can be computed for arbitary t-
norms T, but that, as pointed out in the Corollary 2, the resulting operation T→  
equals the T- residuum, i.e., satisfies axiom (R) only if the t-norm T is left-
continuous [13]. 

In [14] residual implications and left-continuous t-norms are discussed, which are 
ordinal sums of semigroups. 

The problem of S-implications and QL implications and the problem of 
qpqp ∨¬⇔→  equality in fuzzy logic theory based on uninorms are still an 

open problems. 

Acknowledgement 

The research is partially supported by the Hungarian Scientific Research Project 
OTKA T048756 and by the project ‘Mathematical Models for Decision Making 
under Uncertain Conditions and Their Applications’ by Academy of Sciences and 
Arts of Vojvodina supported by Vojvodina Provincial Secretariat for Science and 
Technological Development. 

References 

[1] Weber, S.,(1983), A General Concept of Fuzzy Connectives, Negations and 
Implications Based on T-norms and T-conorms, Fuzzy Sets and Systems 
11, pp. 115-134 

[2] Fodor, J., (1996), Fuzzy Implications, Proc. of International Panel 
Conference on Soft and Intelligent Computing, Budapest, ISBN 963 420 
510 0, pp. 91-98 

[3] Smets, P., Magrez, P., (1987), Implication in Fuzzy Logic, International 
Journal on Approximate reasoning 1, pp. 327-347 

[4] Dubois, D. Prade, H., (1991), Fuzzy Sets in Approximate Reasoning, Part 
1: Inference with possibility distributions, Fuzzy Sets and Systems 40, pp. 
143-202 



M. Takács 
Uninorm-based Residuated Lattice 

 274 

[5] Fodor, J., Rubens, M., (1994), Fuzzy Preference Modeling and Multi-
criteria Decision Support. Kluwer Academic Pub., 1994 

[6] Birkhoff, G., (1973), Lattice theory. American Mathematical Siciety, 
Providence 

[7] Höhle, U., (1995), Commutative residual l-monoids, in [Höhle & Kelement 
(1995)], pp. 56-106 

[8] Rudas, I. J., (2004), Generalized T-operators, Machine Intelligence Quo 
Vadis?, P. Sincak, J. Vascak, K. Hirota (eds), World Scientific, 2004, pp. 
179-198 

[9] De Baets, B., Fodor, J., (1999), Residual Operators of Uninorms, Soft 
Computing 3, (1999), pp. 89-100 

[10] Takacs, M., (2004), Approximate Reasoning in Fuzzy Systems Based on 
Pseudo-Analysis, PhD thesis, University of Novi Sad 

[11] Klement, E. P., Mesiar, R., Pap, E.,(2000), Triangular Norms, Kluwer 
Academic Publishers, 2000a, ISBN 0-7923-6416-3 

[12] Fullér, R., (1998), Fuzzy Reasoning and Fuzzy Optimization, Turku Centre 
for Computer science, TUCS General Publication, N0 9, September 1998, 
ISBN 952-12-0283-1 

[13] Fodor, J., (1991), On Fuzzy Implication Operators, Fuzzy Sets and Systems 
42, pp. 293-300 

[14] Mesiar, R., Mesiarová, A., (2004), Residual Implicators and Left-
Continuous T-norms which are Ordinal Sums of Semigroups, Fuzzy Sts 
and Systems 143, pp. 47-57 


