
Magyar Kutatók 7. Nemzetközi Szimpóziuma 
7th International Symposium of Hungarian Researchers on Computational Intelligence 

 295 

Extraction of Representative Learning Set from 
Measured Geospatial Data 

Béla Paláncz 
Department of Photogrammetry and Geoinformatics, Faculty of Civil Engineering, 
Budapest University of Technology and Economics 
Műegyetem rkp. 3, H-1111 Budapest, Hungary, palancz@epito.bme.hu 

Lajos Völgyesi, Piroska Zaletnyik 
Department of Geodesy and Surveying, Faculty of Civil Engineering, Budapest 
University of Technology and Economics 
lvolgyesi@epito.bme.hu 

Levente Kovács 
Department of Control Engineering and Information Technology, Faculty of 
Electrical Engineering and Informatics, Budapest University of Technology and 
Economics 
lkovacs@iit.bme.hu 

Abstract: The efficiency of the application of soft computing methods like Artificial Neural 
Networks (ANN) or Support Vector Machines (SVM) depends considerably on the 
representativeness of the learning sample set employed for training the model. In this study 
a simple method based on the Coefficient of Representativity (CR) is proposed for 
extracting representative learning set from measured geospatial data. The method 
eliminating successively the sample points having low CR value from the dataset is 
implemented in Mathematica and its application is illlustrated by the data preparation for 
the correction model of the Hungarian gravimetrical geoid based on current GPS 
measurements. 
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1 Introduction 

During the last decade, machine learning algorithms, such as artificial neural 
networks (ANN) and support vectors machines (SVM) have extensively used for 
wide range of applications. They have been applied for classification, regression, 
feature extraction, data prediction and spatial data analysis. 

To ensure generalization properties of machine learning methods like artificial 
neural networks and support vector machines, the set of measured data should be 
split into learning and testing sets, [1]. The question is how to divide the measured 
sample set into these three sets in order to extract the most information as it is 
possible. This is especially important when the number of samples is relatively 
small. There are different methods suggested how to carry out the learning and 
testing process taking into account this requirement, [2]. Optimal sampling 
scheme would be regular triangular or square grids, which keep the maximum 
standard error to a minimum, [3]. However, geospatial data samples are irregularly 
spaced and do not form rectangular grid. Qualitatively these irregularities are 
indicated by local clustering and dispersion, but for numerical computations one 
needs quantitative characterization of the deviation from the optimal, uniform 
spatial sample distribution. There are different indices introduced to indicate the 
representativeness of a real sample distribution, [4]. In this study we employed the 
Coefficient of Representativity (CR) proposed by [4]. 

2 Measures of Representativity 

Let us suppose, that we have {xi, yi, zi} measured sample points and their {xi, yi} 
coordinates are on a convex region, see Figure 1. 

 
Figure 1 

Measured data sample points and the border of the convex region 
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2.1 Nearest Neighbours Index 

One of the possible characterizations of the representativity of this sample set was 
suggested by [5] via Nearest Neighbours Index (NNI). The NNI is defined as the 
ratio of the mean of the Nearest Neigbours distances (NNIdist): 
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where N is the number of sampling points and to the mean of the Nearest 
Neigbours distances for uniform distribution of the points. This Mean Random 
Distance (MRD) is defined as: 
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where SToral is the total surface of the investigated region. Thus the NNI is equal to: 
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The NNI is close to 1 for the sampling points having a uniform spatial distribution. 
When NNI < 1, the samples are more clustered than expected compared to a 
uniform random distribution. In the contrary, an NNI > 1 indicates a dispersion of 
the samples. 

The main limitation of this index is that this is a global measure, and gives no 
information about local clusters or dispersions. 

2.2 Voronoi Polygons 

Voronoi polygons have the property to contain only one measurement and to have 
a geometry that will include all the datapoints that are closer to the measurement 
than those associated to clustered data, [6]. The area of the Voronoi polygon 
belonging to a sample point may be considered as the region of attraction of this 
point, because the points of this region are closer to this sample points than to 
other sample points, see Figure 2. 

In case of uniform distribution of the sample points, the size of the region of 
attraction of every sample point – the ares of the corresponding Voronoi polygons 
– is the same. 

Therefore the histogram of the areas of these polygons might help describe 
quantitatively the homogenity of the sample set. 
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Figure 2 

Voronoi polygons of the data samples and the border points 

 
Figure 3 

Intensity plot of the Voronoi polygons corresponding to their size 

Figure 3 shows the Voronoi polygons, where a polygon gray level intensity is 
proportional with its size. Larger polygons are brigthter. 

The main handicape of this measure is that points can be clustered and still have 
relatively large Voronoi polygons. In an other words, large Voronoi polygons do 
not guarantee that the points are isolated. 

For example, the Voronoi polygon belonging to point 6 is larger than those 
belonging to point 3 or point 5. However, the distance between points 3 - 5 is 
greater than the distance between points 5 - 6 (Figure 2). 
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2.3 Coefficient of Representativity 

Dubois, [4], suggested a new measure that combines both the distance of each 
point to its nearest neigbour and the surface of the Voronois polygons. This 
measure, called Coeffient of Representativity (CR) is a product of two terms: 

m
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which will take into account the surface of the Voronoi polygon. It is equal to the 
ratio of the surface of the Voronoi polygon (SV) to the ideal surface it should have 
to obtain in case of a homogeneous sample set. This surface is simply defined as 
the mean surface (Sm) that is the total area of the investigated region STotal, divided 
by the number of sampling points N: 

 
Figure 4 

Intensity plot of the CR values. A polygon gray level intensity is proportional with its CR 
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The second term B, is equal to the ratio of the squared distance between a point to 
its nearest neighbour (NNdist) to the mean surface of the Voronoi polygons: 
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For reqular grid where points are distributed in the middle of each cell of grid 
NNdist

2 = SV and B = 1. Then the CR for any point can be defined as: 
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Figure 4 shows the CR values of the Voronoi cells represented by gray level 
intensities. The measure based on the area of the Voronoi polygons are different 
from the measure based of CR, compare Figure 3 and Figure 4. 
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3 Constructing Optimal Learning Set 

Once we have a measure of the representativity of a dataset, an algorithm can be 
developed to extract samples from the irregular dataset to form the best learning 
set as possible. This optimal extraction process can be considered as a 
combinatoric max-min problem. Namely, from the measured n patterns, one 
should select m < n samples in a way, that in the constructed learning set the 
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combinations. Strictly saying, it is a max(min(CR)) combinatoric problem, and one 
may solve it by genetic algorithm. 

However, such an algorithm is very time consuming, therefore a suboptimal 
algorithm may be employed as an alternative solution. In this case, we construct 
the learning set by eliminating sucessively samples from the original set of the n 
samples. Namely, we simply drop out the sample, which has actually the minimal 
CR and repeat this action m - n times. 

The implementation of this algorithm under Mathematica 5.2 is available in [8]. 

Let us eliminate two samples of the dataset, see Figure 1. 

It can be clearly seen on Figure 5 comparing it with Figure 4, that the homogenity 
of sample set has been considerably impoved by elimination of the sample points 
having low CR values. 

 
Figure 5 

Intensity plot of the CR values after eliminating two samples 

As illustration of the application of the method for real world problem, a learning 
set will be constructed for a neural network to be trained to model the Hungarian 
gravimetrical/GPS geoid. 
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4 Learning Set for the Hungarian Geoid 

4.1 Data Preprocessing 

Recently GPS measurements provide more precise data than gravimetrical 
measurements did before. However, their numbers are considerably less than those 
of the gravimetrical ones. Therefore it is reasonable to use them for correction. 
The values of the correction of the gravimetrical geoid –- the so-called corrector 
surface – are based on the differences between the GPS and the gravimetrical 
measurements, [7]. In case of Hungary we have the following dataset for the 
corrector surface, see Figure 6. 

 
Figure 6 

Locations of the sample values of the corrections and the convex border of the Hungarian region 

Clustering and dispersion of the datapoints can be clearly seen on Figure 6. 

4.2 Computing Voronoi Tesselations 

First, we compute the Voronoi polygons, see Figure 7. 

 
Figure 7 

Voronoi tesselations 
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4.3 Computing Coefficient of Representativity 

The CR values for the sample points can be computed, see Figure 8. 

 
Figure 8 

The distribution of CR in the Voronoi cells 

Smaller the value of CR darker the corresponding cell region. 

Figure 9 demonstrates the distribution of the CR, indicating the majority of the 
small values. 
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Figure 9 

The histogram of the CR distribution of the original data set 

The statistics of the CR distribution of the original sample set is showed in Tab. 1. 

Table 1 
Statistics of CR distribution of the original data set (304 points) 

Min Max Mean Standard deviation 
0.00235 4.712 0.449 0.593 
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4.4 Sucessive Elimination of Sample Points Having Low CR 

In order to create the learning set, we eliminate m = 110 sample points from the 
original n = 304 datapoints. 

Figures 10-12 show the remained points after elimination as learning set, the 
Voronoi tessalation and the distribution of the CR values respectively. 

 
Figure 10 

Locations of the sample values of the corrections after elimination of 110 points 

 
Figure 11 

Voronoi tesselations of the learning set 
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Figure 12 

The distribution of CR in the Voronoi cells in the learning set 

On Figure 13 can be seen how considerably changed the CR distribution. 
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Figure 13 

The histogram of the CR distribution in the learning set 

The statistics of the CR distribution of the original sample set are in Table 2. 

Table 2 
Statistics of CR distribution of the learning set (194 points) 

Min Max Mean Standard deviation 
0.1606 4.767 0.563 0.469 

Conclusions 

The suggested method is proved to be successful to decrease considerably the 
inhomogenity of the learning dataset and the differences in the CR indices of the 
data points. An improvement of this method would be the application of Voronoi 
tessalation on non-convex region. In this way the effect of non-convex country 
border can be taken into account and more realistic CR values could be computed. 
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