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Abstract: The basis of the presented methods for the visualization and clustering of graphs
is a novel similarity and distance metric, and the matrix describing the similarity of the
nodes in the graph. This matrix represents the type of connections between the nodes in the
graph in a compact form, thus it provides a very good starting point for both the clustering
and visualization algorithms. Hence visualization is done with the MDS (Multidimensional
Scaling) dimensionality reduction technique obtaining the spectral decomposition of this
matrix, while the partitioning is based on the results of this step generating a hierarchical
representation. A detailed example is shown to justify the capability of the described
algorithms for clustering and visualization of the link structure of Web sites.

1 Introduction

Complex networks are getting more important and by time they get more complex
also, thus in order to be able to gain insight into these sophisticated structures we
need to somehow visualize them. There have been many graph drawing
algorithms developed in recent years [l, 2], however, they alone cannot be
efficiently used to visualize large graphs which have hundreds or thousands of
nodes. The problem with traditional graph drawing algorithms is that because of
the complexity of the networks which have to be visualized the resulting drawing
is difficult to interpret for humans. In order to encounter this problem clustering of
these kinds of graphs can be used to reduce the visual complexity and help the
data miner discover the intrinsic features.

Examples of complex networks are scale-free networks. A network is named
scale-free if its degree distribution, i.e. the probability that a node selected
uniformly at random has a certain number of links (degree), follows a particular
mathematical function called a power law. The power law implies that the degree
distribution of these networks has no characteristic scale.

Albert-Laszlo Barabasi is one of the most well-known researchers of scale-free
networks. In the Barabasi-Albert preferential attachment model the probability of

483



484

M. Erdélyi et al.
Node Similarity-based Graph Clustering and Visualization

adding a new edge between an existing and a new node is proportional to the
degree of the existing node [3]. In [4] it is concluded that the Web forms a small-
world network, which characterizes social or biological systems, such that two
randomly chosen documents on the Web are on average 19 clicks away from each
other. That is, despite its huge size, the Web is a highly connected graph with an
average diameter of only 19 links. In the well-known book [5], though in a less
scientific manner, more examples and explanation of the workings of scale-free
networks are given.

Because of the large-scale property of the Web and its high growth rate, finding
information on it is becoming more challenging. A well-known algorithm for
extracting relationships between Web pages is PageRank [6] which creates a
transition matrix for the Markov chain of a theoretical infinitely dedicated Web
surfer browsing the Web by randomly clicking on links to obtain the ‘authority’ of
individual Web pages.

Another solution to easing the location of information is clustering the Web pages.
In [7] a way of web content mining is introduced by performing relational
clustering of Levenshtein distances. Relational alternating cluster estimation
(RACE) is applied to automatically extract meaningful keywords from documents
and then these keywords are used to automatically classify (previously unknown)
documents. In order to speed up the web mining process a new graph
representation, the graph matrix, which combines the adjacency matrix with the
linked lists allowing for the fastest possible access to different types of
information on a graph is shown in [8]. The graph representation is increasingly
important for a high search performance, for instance, for rapidly extracting
information from the link structure in a hub and authority graph of the Web. An
application of this data structure arises from categorical data clustering defining
proximity and similarity of data through their patterns of co-occurrence. Another
sophisticated document clustering is presented by [9]. It is concluded that the
novel normalized-cut method using a new approach of combining textual
information, hyperlink structure and co-citation relations into a single similarity
metric provides an efficient way of clustering documents. Graph-theoretic
clustering methods include [10] in which a structure called scale-free minimum
spanning tree is used. In [11] a spectral method is described which can be used to
partition graphs into non-overlapping subgraphs along with how the Fiedler-vector
of the Laplacian matrix can be used to decompose graphs into non-overlapping
neighbourhoods that can be used for the purposes of clustering. There is also a
growing research interest in complex networks from the perspective of
bioinformatics. Primarily for this field Vicsek et al. developed the application
CFinder [12] for locating and visualizing overlapping, densely interconnected
nodes in an undirected graph. This application is able to locate the cliques of large
sparse graphs efficiently and allows the user to navigate between the original
graph and the web of interconnected node groups. In a letter Vicsek et al [13]
discussed clique percolation in Erdés-Rényi random graphs, a novel and efficient
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approach for discovering the overlapping communities in large networks. It was
obtained that the percolation transition takes place when the probability of the
connection of two vertices reaches a threshold, and at this transition point the
scaling of the giant component with the number of vertices in the random graph is
highly non-trivial and is related to the size of the inspected cliques.

The most related work to this paper is presented in [14]. A novel metric of node
similarity is proposed which is used for clustering the graph and with the help of
which the linkage pattern of the graph is encoded into the similarity matrix. The
hierarchical abstraction of densely linked subgraphs is obtained by applying the k-
means algorithm to this matrix with a heuristic method to overcome the inherent
drawbacks of the k-means algorithm. For the resulting clustered graphs a
multilevel multi-window approach is presented to hierarchically draw them in
different abstract level views with the purpose of improving their readability.

Visualization of large graphs is very important because humans are better at
pattern recognition in the two-dimensional space. In this paper the main emphasis
is on the visualization and clustering of Web graphs but the methods presented
here apply generally to other complex networks also. On a related note another
method of visualization for the Web has to be mentioned. This is based on
Kohonen's self-organizing map (SOM) algorithm which is able to automatically
categorize a large Internet information space into manageable sub-spaces.
However, because of the ever increasing information on the Web, the size of the
map has to be increased and thus the visual load of the SOM increases also,
making it difficult to clearly recognize local details. Fisheye views and fractal
views have been investigated [15] in order to support the visualization of SOM.

This paper describes a new approach to hierarchically clustering graphs and the
visualization of them. The key idea behind this approach is to use the results of the
dimensionality reduction technique multidimensional scaling (MDS) [16] not for
only visualization but for clustering too. This is achieved by first constructing a
node similarity matrix based on a novel node similarity metric and then applying
the dimensionality reduction technique on it. The obtained two-dimensional data
points are then used as the input to the traditional single-linkage clustering
algorithm, from the results of which a dendrogram and the Visual Assessment of
Cluster Tendency (VAT) [17] figures can be generated.

The remainder of this paper is as follows. In the next section the definitions
needed for the graph clustering problem are presented, then the node similarity
matrix is described in Section 3 along with the proposed clustering and
visualization algorithms. Section 4 presents the experimental results including an
example of visualization and clustering of a small Web graph followed by the
conclusions and possible future work.
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2 Definitions

A graph G = (V,E) is a set V of vertices and a set E of edges such that an edge
joins a pair of vertices. In this paper G will be always a general undirected or
binary graph.

The adjacency matrix A of G is a matrix with rows and columns labeled by graph
vertices, with a 1 or 0 in position (v;,v;) according to whether v; and v; are
neighbours or not. For an undirected graph, the adjacency matrix is symmetric. If
a graph G is a large graph it is important to note that its adjacency matrix A can be
characterized by high dimensionality and sparsity.

The incidence matrix R of G is a matrix defined as R=(r;))|g)qv| such that r;; equals
to 1 or 0 whether node v; is incident with edge e; or not.

An example graph and its matrices A and R are shown in Fig. 1.

R:
1100000
A= 1010000
011100 0 1001000
1 1. 01 0 0 O 0101000
1 1.1 0 0 1 O 0011000
0O 0 0 0 O 1 1
000 0 1 1 0 1 0001010
0O 0 0 0 1 1 0 0000110
000O0OT1O0OT1
000O0O0T11
Figure 1

An example of a simple graph and its adjacency and incidence matrices

As the basis of the later described similarity measure a so-called node vector has
to be defined. The node vectors are represented by the columns of R, thus they
simply define to which edges a node belongs. In other words, the column space of
R represents nodes and each row of R characterizes an edge. Note that node
vectors of an undirected graph are binary vectors since they are derived from the
adjacency matrix of the graph.

The k-clique of an undirected graph G is a complete subgraph of G with k number
of vertices.
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3 Clustering and Visualization Algorithms

3.1 Node Similarity Matrix

For the purpose of clustering a graph, a node metric has to be defined which
quantifies the abstract features of the nodes, and then clustering can then be done
by assigning the nodes to a group according to their metric values. In this paper a
node structural metric has been chosen 14 making use of the number of shared
edges. The similarity degree of two nodes is partly determined by the number of
shared edges between them. The more shared edges two nodes have, the more
similar they are, and conversely, the more edges they do not share, the less similar
they are. In order to quantify these features a good choice is the Jaccard
coefficient among the other most used measures in the literature such as the
Euclidean distance, the Minkowsky distance and the dot product. The Jaccard
coefficient is a good choice because it is able to measure the degree of overlap,
which is defined as

#Hay=h=1)
#Hlay =1+ #bh=1)—#Flag=b;=1)

simila, b) =
(D
where a and b are binary vectors. For example, the numerator in the above

equation denotes the number of common attributes i (i.e., edge) of a and b.

According to the above definition (1) the similarity degree of two nodes are
calculated using their node vectors defined in Section 2. Substituting a, b with the
node vectors in the incidence matrix R yields the following equation:

r;‘rrj iRTI'.'[Jl:I'.'}'r R]

rlei+ r}-r‘f — iy (RTe(elR)+ [RTL'j i L'}'I-R] - [RTL'I-][L'}IR]

similry, 1) =
2

where i and j is from the set {1, 2, ..., |V|}, and € (gj) denotes the ith (jth) canonical
vector of dimension e, i.e.,e=(1, 1, ..., ).

Note that the more similar two nodes, the less links that connect them. The degree
of similarity of two nodes will reach its maximum, i.e., 1, when the two nodes are
connecting a sole edge.

The problem with using this metric alone is that the similarities of all pairs of non-
neighbour nodes are zero, which is inadequate in real applications. For example, if
a Web page represented by node v; links to another one represented by node v,
which in turn links to node vs, then v, should be somewhat related to v;. To solve
this problem, a transitive similarity has to be used. Thus sim(r;, r;) becomes
sim(ry, rp)*sim(r,, r;) assuming that an existing path between v, and v3 is (v, v3)
and (Vz, V3).
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The shortest paths between non-neighbour nodes, that is, the paths which have the
fewest edges can be found by the well-known Dijkstra or Floyd’s algorithm. The
products of sequentially multiplying similarity values of node pairs of the
resulting paths can then be calculated. Finally, the minimum value among those
products is chosen as the degree of similarity between two non-neighbour nodes.
Thus the node similarity matrix is of the following form: S = [sim(r;, ;)] vy -

The symmetirc node similarity matrix of the example graph in Fig. 1 is shown
below.

S =

1.000 0.200 0.200 0.167 0.007 0.028 0.007
0.200 1.000 0.200 0.167 0.007 0.028 0.007
0.200 0.200 1.000 0.167 0.007 0.028 0.007
0.167 0.167 0.167 1.000 0.042 0.167 0.042
0.007 0.007 0.007 0.042 1.000 0.250 0.333
0.028 0.028 0.028 0.167 0.250 1.000 0.250
0.007 0.007 0.007 0.042 0.333 0.250 1.000

3.2 Visualization of the Graph with Dimensionality Reduction

Let X = {x, X3, ..., Xx} be a set of the observed data, denote x; the i-th
observation. Each data object is characterized by D dimension, so X;; yields the j-
th (j =1, 2, .., D) attribute of the i-th (i =1, 2, ..., N) data object. The goal of
dimensionality reduction is to map a set of observations from a high-dimensional
space (D) into a low-dimensional space (d, d << D) preserving as much as
possible the intrinsic structure of data. In the reduced space many data analysis
tasks (e.g. classification, clustering, image recognition) can be carried out more
faster than in the original data space. Dimensionality reduction methods can be
performed in two ways: (i) feature selection or (ii) feature extraction.

Feature selection methods keep the most important dimensions of the data and
eliminate the unimportant or noisy factors. Features extraction methods take all
attributes into account and they provide reduced representation by feature
combination and/or transformation. The Principal Component Analysis (PCA) is
one of the well-known linear feature extraction methods. PCA represents data as
linear combinations of a small number of basis vectors. The method finds the
projection that stores the largest variance possible in the original data.

Multidimensional scaling (MDS) [16] refers to a group of methods, composing by
widely used unsupervised data visualization techniques. The classical MDS
discovers the underlying structure of data set by preserving similarity information
(pair wise distance) among the data objects. Given a set of data in a high-
dimensional feature space, MDS maps them into a low-dimensional (generally 2-
dimensional) data space in a way that objects that are very similar to each other in
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the original space are placed near each other on the map, and objects that are very
different from each other, are placed far away from each other. There are two
types of MDS: (i) metric MDS and (ii) non-metric MDS. Multidimensional
scaling based on measured proximities is called metric multidimensional scaling.
While metric MDS preserves the distances among the objects, non-metric MDS
methods attempts to preserve the rank order among the dissimilarities. The exact
MDS algorithm used for the purposes of visualization in this paper is described in
detail in [19].

3.3 Clustering

Clustering is the unsupervised process of grouping information to achieve a more
recognizable presentation of the original data. The computation of a clustering
generally requires a metric on the data to determine the closeness of data points.
The clustering of graphs can be based on either the graph structure itself, or on
some kind of properties suitable for the application domain.

In this paper the metric used for graph clustering is a traditional one which is not
obtained directly from the graph structure. The two-dimensional results of the
dimensionality reduction algorithm described in the previous section are used to
do the agglomerative hierarchical clustering [20] based on the traditional single-
linkage algorithm. The dissimilarity of the data points obtained by MDS is
calculated using the Euclidean distance metric. Note that the single-linkage
algorithm corresponds to Kruskal’s minimal spanning tree algorithm and is
basically the greedy approach to find a minimal spanning tree.

3.4 Visualization of the Clustering Results

For the visualization of the clustering results a dendrogram and a VAT is used.
Based on the distance matrix obtained from the two-dimensional results of MDS a
dendrogram can be drawn to visualize and hierarchically cluster the nodes in the
original graph (for examples, see Section 4). Using this diagram, the human data
miner can get a conception how similar the clusters are in the original space and is
able to determine which clusters should be merged if needed.

Visual Assessment of Cluster Tendency (VAT) method was proposed in [17]. Its
aim is similar to one of cluster validity indices, but it tries to avoid the ‘massive
aggregation of information’ by scalar validity measures. Instead of a scalar value
or a series of scalar values by different number of clusters, an N x N intensity
image is proposed by Hathaway and Bezdek. It displays the reordered form of the
dissimilarity data D = [d(Xi, Xj)]nxn, Where d(X;,X;) is the dissimilarity of the ith and
jth samples (not necessarily distance, but in this paper the distance of the projected
data points is used as the dissimilarity measure). For the exact VAT algorithm
used here please refer to [21].
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3.5 Implementation

The implementation is written in MATLAB. To obtain the Web connectivity
graph for the example Web site and for testing a robot was used which was written
for MATLAB also.

It has to be noted that since the implementation is not fully mature certain
functions which are planned in the future are not incorporated into it yet. One of
these is the comfortable user interface which now completely relies on
MATLAB’s figure-viewing tools which have to be used in order to navigate
through the visualization of the graph. Since the drawing of the whole graph is
shown in a small window when the figure window opens, many nodes cannot be
distinguished from the neighbouring ones and their URL labels cannot be read. To
remedy this problem the user has to zoom in and use panning to scrutinize the
drawing of the graph. Reducing the similarity threshold above which the edges
between connected nodes are drawn could also help.

4 Application Examples

This section contains examples of the results yielded with the presented method.
Visualization examples are given along with a short explanation of them. A simple
graph is presented first which shows the good clustering capability of the method
described in this paper. Then a more sophisticated example of a Web graph is
analyzed.

4.1 Simple Graph

The visualization of the graph depicted in Fig. 1 is shown below along with the
accompanying dendrogram for the clustering.

MDS embedding (with graph).
3

01 o8]
05
0

4

0. L L L L L L L L ,
%4 03 02 01 0 01 02 03 04 05

Figure 2
Visualization of the two-clique graph and the dendrogram illustrating the clustering
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As it can be seen on the dendrogram, the nodes labeled 1, 2 and 3 are completely
identical, just like the nodes 5, 7. They are symmetric to each other because they
have the same kind of connections: they are fully connected to each other and to
another node which connects this 4-clique with the 3-clique. The situation is the
same with the nodes 5, 7. The nodes connecting the 3-clique and 4-clique
subgraphs are the ones labeled 4 and 6.

4.2 Real-Life Example: Link Structure of a Web Portal

The Web graph of ORIGO (http://www.origo.hu) was obtained with a maximum
link depth of 500. This is a comprehensive Hungarian Web portal with a large
collection of news channels and articles for different topics.

The visualization of the link structure of this Web portal is shown in Fig. 3 with
the similarity threshold for shown-up edges set to 0.025, that is, edges between
nodes with a similarity below the mentioned threshold remain hidden.

Two-dimensional MDS embedding (with neighborhood graph).

0.15-
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ipftabu,origo. hu/
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0 002 004 006 008 0.1

Figure 3
MDS embedding of the Web graph

Since the figure representing the full graph is too crowded two zoomed-in views
are provided to show that clusters can be recognized indeed. In Fig. 4 a portion of
the Web portal related to advertisements (vehicles, real estate, etc.) can be seen
which justifies the effectiveness of the node similarity described in Section 3
along with a view of nodes from tabu.origo.hu, the subdomain of origo.hu, which
can be clearly separated from the rest of the graph.
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Figure 4
An example of highly related pages and a clearly identifable cluster in the Web graph

The clustering results of the aforementioned Web graph can be seen in Fig. 5.

Figure 5
VAT and dendrogram for the Web graph

Many distinct clusters can be identified on the VAT also. For better usability the
user interface has to be extended so that the user can check what kind of nodes
correspond to certain areas of the VAT and the dendrogram.

Conclusions

The analysis of graphs is very important in our linked world. The visualization and
clustering of them deserves particular attention. This paper described a novel
algorithm and program prototype for these two aforementioned tasks. The basic
idea mentioned here was the construction of a similarity metric which can be used
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to describe not only the nodes themselves in the graph but the type of their
connections also. Using this similarity metric the graph can be visualized in two
dimensions. This way a map of one part of the World Wide Web can also be
obtained in which the navigation is easy with the help of MATLAB’s figure-
viewing tools. The resulting two-dimensional graph can be easily partitioned with
the help of the aforementioned similarity metric. An example is shown for
clustering in the form of a dendrogram. To visualize the hidden clusters of the
graph a VAT figure is generated which shows very well how many and what kind
of clusters can be found in the graph. The example in this paper illustrated the
connections of the ORIGO Web portal. The presented solution can also be used
efficiently for web mining as the preprocessing step. Of course, other types of
graphs, such as social networks could be analyzed using the described method.
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