
Magyar Kutatók 7. Nemzetközi Szimpóziuma
7th International Symposium of Hungarian Researchers on Computational Intelligence

 507

An Overview of the State-of-The-Art Reverse
Engineering Techniques

László Angyal, László Lengyel, Hassan Charaf
Department of Automation and Applied Informatics
Budapest University of Technology and Economics
Goldmann György tér 3, H-1111 Budapest, Hungary
{angyal, lengyel, hassan}@aut.bme.hu

Abstract: Nowadays the development without model-based approaches are hardly
imaginable, because models are not only closer to human thinking but also help the
communication between developers. During a long development process the initial model
becames inconsistent with the code that can be synchronised manually or automatically by
tools. Reverse engineering tools have been created to help developers achieving that the
design and the implementation harmonize again. This work examines the importance of the
model-based development and gives an overview of the state-of-the-art reverse engineering
methods and tools. Round-trip engineering is a more advanced approach of software
development than reverse engineering, because the changes that affect the design are made
not in the code but in the model, hereby better software quality can be achieved.

Keywords: model-based development, reverse engineering, round-trip engineering, tools,
design recovery

1 Introduction

Model-based development plays an important role in managing complexity of
software systems. Visual modeling of software systems represents the desirable
behaviour of the system in a higher abstraction level, which can be an effective
way to make the software design process more efficient. Well-constructed models
are unambiguous, easy-to-understand, and enable communication between
developer team members. By modeling software, developers understand the
design and the associated risk, managers are able to make resource planning.

General purpose modeling languages are insufficient for modeling a domain
specific activities like business process modeling. Domain-Specific Modeling [1]
(DSM) is a way of designing and developing systems in a higher abstraction level,
closely focusing on the problem domain and usually applied together with
generative programming. Using very expressive DSM languages can dramatically

L. Angyal et al.
An Overview of the State-of-The-Art Reverse Engineering Techniques

 508

improve code quality due to automated source generation, and increase
productivity.

The model represents the design state of a system, but the source code represents
the implementation state of the same system. Automation of synchronizing these
states is important to avoid error prone and tedious human tasks, and to reduce
costs. Certain models such as the most UML diagrams lets the developers gain
better understanding of the functionality and system behaviour but only a small
amount of these models can be mapped to source code.

Model-Driven Architecture (MDA) [2] is the OMG’s software development
approach, which increases the role of models in development process. It uses
models with different level of abstraction to design, to modify, and to maintain
software systems. The models with the highest level of abstraction called
Platform-Independent Models (PIMs) that describe the business rules and
independent of any implementation technology. Next step is that PIMs are
transformed into Platform-Specific Models (PSMs) that describe how the system
uses a technology platform. PSMs are closer to the implementation of the system.
The final step is to transform PSM models to executable code. Since the entire
MDA process is driven by PIMs, there will be far less manual coding, the quality
of the software will be higher and the development process focuses the high-level,
technology independent modeling and parts of that can be reused in other projects.
MDA concept is useless without tools automating the model transformations.

Model-Integrated Computing (MIC) [3] [4] is a technique that converts domain-
specific models into executable code. MIC provides a framework for software
production using both metamodeling environments and model interpreters. MIC
supports the flexible creation of modeling environments, and helps tracking the
changes of the models.

Model-based development (MBD) is an increasingly applied method in producing
software artifacts. Model-driven development approaches emphasize the use of
models at all stages of system development. In model-based development, models
are used to describe all artifacts of the system, i.e., interfaces, interactions, and
properties of all the components that comprise the system. These models can be
manipulated in a number of different ways to analyze the system, and in certain
cases to generate the complete implementation of the system. In order to capture
the semantics that is as close as possible to the domain of the developed system in
an effective manner, building a domain-specific modeling language is a suitable
choice. Using domain concepts to modeling systems helps increase productivity,
makes systems easier to maintain and evolves and shortens the development cycle.

The current work focuses on reverse engineering approaches and tools. The rest of
the paper is organised as follows: Section 2 presents the importance of round-trip
engineering. In Section 3, we review existing reverse engineering tools and
approaches. Finally, conclusions and future work are elaborated.

Magyar Kutatók 7. Nemzetközi Szimpóziuma
7th International Symposium of Hungarian Researchers on Computational Intelligence

 509

2 Supporting Round-Trip Engineering with Model-
based Development

The position of round-trip engineering [5] is rising in software development
projects, many visual modeling tool is not limited to depicting the design, these
tools support source code generation from visual models and existing code
transformation into these kinds of models to make changes on the design than
regenerate the code.

The structure and behaviour of the system defined by the model can be translated
by tools into source code. This process is referred to as forward engineering. The
idea behind forward engineering is that the model as a special graph can be
traversed, and source code can be generated from the incorporated information.
Generally, forward engineering starting with a model generates one or more
software artifacts that are closer in detail and level to the final implementation of
the software. MDA has been proposed for forward engineering, where abstract
models are created by the developer.

Reverse engineering of a source code regenerates the model of a system
graphically on a higher abstraction level, therefore, the structure is easy to
conceive, and the relations between components can be discovered. More
generally, reverse engineering is applied to generate a more abstract model from a
software artifact.

Figure 1

Forward and reverse engineering

In efficient and optimal cases forward and reverse engineering performs only
incremental transformations, the changed parts of the model is transformed instead
of the whole model.

Round-trip engineering applies together forward and reverse engineering, in order
to synchronize source code and model: any changes of the source code are

L. Angyal et al.
An Overview of the State-of-The-Art Reverse Engineering Techniques

 510

synchronized back into the model, the source code stay consistent with any
changes of the design model. The goal of this approach is to minimize the distance
between different representations of the system. Round-trip engineering provides a
technique for enabling the developers to move freely between source code and
model, this supports iterative development approach. After synchronizing the
model with the revised code, developers may choose the best way to work: modify
the code further or change the model.

A software development project can be split into iterations instead of sequential
phases. An iteration involves all the phases, and a portion of the project is
implemented as an executable in an iteration. After each iteration, developers have
a working software to use and learn from it and feedback into the next iteration of
the project. Iterative and incremental development (IID), due to the low
development risks, applied in most development process. Advantages of IID are
lower risks, errors come into sight sooner, easier to test new functions. Round-trip
engineering automates the source code and design synchronization between
iterations.

Since data can be lost during model transformations, forward engineering and also
model transformation executions may produce a trace model of the transformation
to keep the correspondance between the source and the target elements. Trace
information is used in code synchronization, allows incremental transformation.
Furthermore, when the relationship between source and target model is not
bijective (not one-to-one), trace information is necessary to be able to trace back
the original state or perform round-trip engineering. OMG’s
Query/View/Transformation (QVT) specification [6], which is supposed to
become the MDA’s standard language for model transformation, contains a
proposal how to deal with the trace information. An instance of the trace class
stores the relationship between models established by a transformation execution.

3 Existing Tools and Approaches

This section introduces the most relevant tools and approaches that supports
round-trip or reverse engineering.

3.1 CASE Tools

Most CASE tools can reverse engineer class diagrams, but there is lack of tool
support for extracting other diagrams. Popular CASE tools like Rational XDE [7],
Borland Together [8], Eclipse GMT [9], and Fujaba [10] support round-trip
engineering. Borland’s Together is one of the leader in commercial round-trip
enigineering tools. LiveSource [8] technology automatically synchronizes models

Magyar Kutatók 7. Nemzetközi Szimpóziuma
7th International Symposium of Hungarian Researchers on Computational Intelligence

 511

and code, thereby the model is based directly on the source code itself, the UML
class diagram will be a view of the implementation. By model changes the source
code is automatically updated, the design is always up-to-date.

Eclipse is an open source framework, which can be extented to be a complete
integrated developing environment by external plugins. Several model
transformation tools are implemented as Eclipse plugin, for example UML
modeling tools including simple round-trip engineering support. Borland Together
is available as an Eclipse plugin. Eclipse Generative Modeling Tools (GMT) is a
set of tools in the area of model driven development. ATLAS transformation
language (ATL) [11] plugin provides a set of transformation tools for GMT. An
ATL transformation program specifies the rules how to match the elements of
source model and how to create elements of target model. ATL supports
traceability using a developer predefined trace metamodel, this approach differ
from QVT. The traceability approach of ATL elaborated in [12] is based on the
fact that an ATL program is just a model and can transformed by an other ATL
program, which automatically inserts transformation rules that creates trace model
elements. The traceability links are described by trace models.

MetaEdit+ [13] is az integrated modeling and metamodeling environment for
DSLs. In MetaEdit+, developer can define a domain-specific modeling language
with roles, constrains and specify the mapping these elements to code fragments in
domain-specific generator. The model execution can be emulated, the generated
code and the model elements are linked to each other, MetaEdit+ shows which
model elements is under execute and also shows the corresponding source code.

Fujaba System elaborated in [10][14] introduces Story-Driven Modeling as a new
method for software development, which is based on a high-level visual
programming language called story diagrams. Fujaba is a round-trip engineering
environment that create class diagrams and story diagrams from extracting the
abstract syntax graph of a Java source code. Story diagrams can visualize the
dynamic aspects of a system as a control flow, adapt UML class, activity, and
collaboration diagrams and can be translated to Java. Story diagrams support two
kinds of activities statement activities and story patterns. Story pattern is a graph
rewriting rule [15] that represents a complex Boolean condition. The Fujaba
generator translates story diagrams into method bodies of the classes depicted in
class diagrams.

3.2 Source Code Parsers and Tools

The input of many reverse engineering tools is files or abstract syntax trees (AST)
that have been created by other tools such as parsers and fact extractors. These
reverse engineering tools do not perform the extraction of the source code but
focuses only on making abstraction and visualizing of these outputs.

L. Angyal et al.
An Overview of the State-of-The-Art Reverse Engineering Techniques

 512

Columbus [16] that is a reverse engineering framework contains a C/C++ source
code analyzer plugin that can extract even large C/C++ projects into UML
diagrams, AST, and call graph. Columbus also contains design pattern
identification and code auditing tool.

The developers of Columbus have been presented a standard exchange schema
(C/C++ AST scheme) that is able to completely describe the AST of any C/C++
source code. This scheme makes the interoperability of other applications easier.
An XML document format CPPML (C++ Markup Language) has been also
presented that has a structure based on the schema, that can be processed by third
party tools easily. The original source can be regenerated using this file.

CPP2XMI [17] is a reverse engineering tool which allows extracting UML class,
sequence, and activity diagrams in XMI format from C++ source. The tool
processes the CPPML output of Columbus/CAN fact extractor and visualize it by
its Layout Creator module in 2D or 3D views. The idea behind this CPP2XMI is
that CPPML output file contains all information from the AST and it can be used
to generate UML sequence and activity diagrams. From object allocations and
function calls, sequence diagram can be created. The conditional and iterative
statements are important for activity diagram generation, the XMI output of
Columbus contains all information about class diagrams.

The Rigi reverse engineering system [18] is an interactive visualization tool of
software structures, it analyzes the dependencies between software artifacts from
the source code. The relations of procedures, procedure calls, data accesses,
variables and among others data and control-flows are discovered and stored in
Rigi graph model (Rigi Standard Format - RSF) than visualized in scaleable
hierarchical graph diagrams. RSF is an intermediate data format and processed by
many reverse engineering tools.

SHriMP (Simple Hierarchical Multi Perspective) [19] is an application and a
visualization technique of exploring hierarchical stuctures like software code.
Bookshelf [20] is a set of tools that aims visualization and navigation on the
information of large software systems.

GUPRO [21] uses own graph exchange language (GXL [22]) which is widely
supported XML schema for fact exchange between reverse engineering tools.
GUPRO is an integrated workbench strongly based on graph modeling and
algorithms. Because source code is stored in internal repository graph, the
developer can choose a code representation or an analyzis technique. The objects
in the repository graph can be queried and browsed using GReQL language.
Query results can be displayed in tables or pointed in the source code directly.

One of the most popular lexical analyzer and parser generators is JavaCC (Java
Compiler Compiler) [23] that can handle any programing or non programing
languages. JavaCC needs a grammar specification to provide Java classes that can
parse any source that matches to that grammar.

Magyar Kutatók 7. Nemzetközi Szimpóziuma
7th International Symposium of Hungarian Researchers on Computational Intelligence

 513

3.3 Design Pattern Recognition

Another research trend of reverse engineering is design pattern recognition from
source code. A design pattern [24] is a reusable object oriented software design
artifacts that solves a problem in particular context. Pointing out the presence of
well known design patterns in an architecture making faster the understanding the
design considerations of a software system. There are several different approaches
to identify patterns in source code. Design patterns can be identified by among
others inter-class relationship in method call, data-flow analyzis, by fuzzy logic,
graph matching or formal semantic.

Pattern recognition is also suitable for measuring software quality [25], because
not only desing patterns, but also anti-patterns [26] can be detected in the
implementation, thus, bad design considerations or weakness of the code can be
discovered. Similarly to design patterns, anti-patterns are piece of reusable code,
but applying these kinds of patterns shuld be avoided. CrocoPat [27] tool does
graph search, it processes RSF (Rigi Standard Format) files that contains the graph
of a system than uses own imperative language to find the predefined patterns
between class inheritance relations and method calls. Columbus uses graph
matching algorithms. Other methods are also available, such as PtideJ [28], which
uses constraint solving or SPOOL [29] , which uses database query. PINOT [30]
pattern inference and recovery tool reclassifies the GoF patterns and implements a
lightweight static inter-class and data-flow analysis.

The evolution of these pattern recognition tool is going towards faster, minimized
misrecognition and ability to find more patterns.

Conclusions and Future Work

Current paper has introduced the importance of the model-based development, we
have pointed out that round-trip engineering improves software quality and
effectiveness of development. Reverse engineering approaches are aiming greater
understandability of software systems, which involves up-to-date documentation,
consistent models. We have examined the most efficient tools and approaches that
support either the whole or a part of the round-trip engineering. We have shown
that the model-based development approaches without comprehensive tools are
hardly usable in practice. Table 1 compares the above-mentioned CASE tools and
Table 2 compares the enumerated reverse engineering tools in certain aspects.

As future work we plan to improve the presented approaches to create a more
efficient both reverse and round-trip engineering tool that can be used as a
designing environment which applies two-directional validated source to model
transformations.

L. Angyal et al.
An Overview of the State-of-The-Art Reverse Engineering Techniques

 514

Case Tools Languages Transformation Modeling
Borland
Together

Java, C++, VB,
C#

source code - UML Class, database model-
physical DB synchronization, source code to
UML sequence, UML Class to any model
with QVT

UML Class,
database

Rational
XDE

many, including
Java, Delphi, VB,
C#

source code - UML Class, database model-
physical DB synchronization, source code to
UML sequence

UML Class,
database

Eclipse
GMT

language
independent

model-based transformations models,
metamodels

MetaEdit+ language
independent

general model to source code, API for user
written reverse engineering program

any domain-
specific model

FUJABA Java Story-Diagrams + UML Class - executable
source code round-trip

Story-
Diagram,
UML Class

Table 1
Comparison of CASE tools

Tools Input data Technique Diagram Construction Pattern
Recognition

Columbu
s

C++ graph matching UML Class +

CPP2XM
I

CPPML,
XMI

dynamic analysis UML Sequence, UML
Activity, UML Class

-

Rigi C++ dependency-,
relational analysis

hierarchical graphs -

SHriMP Rigi RSF visualization hierarchical view of graphs -
Bookshelf Rigi RSF function call, variable,

cross file analysis
software landscape -

GUPRO GXL graph query - -
CrocoPat Rigi RSF graph search visualize graphs in 2D, 3D +
FUJABA Java

source
dynamic analysis,
fuzzy logic

Story-Diagram + UML
Class

+

SPOOL UML-
based
CDIF [31]

database query UML Class, HTML +

PINOT Java data-flow-, inter-class
analysis, consider the
usage of java utility
classes

- +

PtideJ Java byte-
code

constraint solver + +

Table 2
Comparison of reverse engineering tools

Acknowledgement

The fund of ‘Mobile Innovation Centre’ has supported in part, the activities
described in this paper.

Magyar Kutatók 7. Nemzetközi Szimpóziuma
7th International Symposium of Hungarian Researchers on Computational Intelligence

 515

References

[1] Jonathan Sprinkle and G´abor Karsai. A Domain-Specific Visual Language For
Domain Model Evolution. Journal of Visual Languages and Computing, 15(2),
April 2004

[2] MDA Guide Version 1.0.1, OMG, document number: omg/2003-06-01, June
12, 2003, www.omg.org/docs/omg/03-06-01.pdf

[3] J. Sprinkle, Model-Integrated Computing, IEEE Potentials, 23(1):28-30, 2004

[4] J. Sztipanovits, G. Karsai, Model-Integrated Computing, IEEE Computer,
30(4):110-111, 1997

[5] S. Sendall, J. M. Küster: Taming Model Round-Trip Engineering, Proceedings
of Workshop on Best Practices for Model-Driven Software Development (part
of 19th Annual ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications), Vancouver, Canada, October 25, 2004

[6] Transformation Specification Object Management Group Query, View.
http://www.omg.org/cgi-bin/apps/doc?ad/05-03-02.pdf

[7] Rational XDE home page:
http://www-128.ibm.com/developerworks/rational/products/xde

[8] Borland Together home page:
http://www.borland.com/us/products/together

[9] Eclipse GMT home page: http://www.eclipse.org/gmt/

[10] U. Nickel, J. Niere, J. Wadsack, A. Zündorf: Roundtrip Engineering with
FUJABA. Proceedings of 2nd Workshop on Software-Reengineering (WSR),
Bad Honnef, Germany(J. Ebert, B. Kullbach, and F. Lehner, eds.),
Fachberichte Informatik, Universität Koblenz-Landau, August 2000

[11] Eclipse ATL home page: http://www.eclipse.org/gmt/atl/

[12] Jouault F. Loosely Coupled Traceability for ATL. In: Proceedings of the
European Conference on Model Driven Architecture (ECMDA 2005)
workshop on traceability, Nuremberg, Germany

[13] MetaEdit+ home page: www.metacase.com

[14] Thorsten Fischer, Jorg Niere, Lars Turunski, and Albert Zündorf: Story
Diagrams: A New Graph Grammar Language Based on the Unified Modelling
Language and Java. Lecture Notes in Computer Science, Springer, 2000

[15] G. Rozenberg (ed.), Handbook on Graph Grammars and Computing by
GraphTransformation: Foundations, Vol. 1 World Scientific, Singapore, 1997

[16] R. Ferenc, A. Beszedes, M. Tarkiainen, T. Gyimothy: Columbus – Reverse
Engineering Tool and Schema for C++, IEEE International Conference on
Software Maintenance, 172-181, Montreal, Canada, 2002

[17] E. Korshunova, M. Petkovic, M. G. J. van den Brand, M. R. Mousavi:
CPP2XMI: Reverse Engineering of UML Class, Sequence, and Activity

L. Angyal et al.
An Overview of the State-of-The-Art Reverse Engineering Techniques

 516

Diagrams from C++ Source Code (Tool Paper), Working Conference on
Reverse Engineering (WCRE’06), Benevento, Italy, 2006

[18] Rigi home page: http://rigi.uvic.ca

[19] SHriMP home page: http://www.thechiselgroup.org/shrimp

[20] Bookshelf home page: http://www.swag.uwaterloo.ca/pbs/intro.html

[21] J. Ebert, B. Kullbach, V. Riediger, A. Winter: GUPRO – Generic
Understanding of Programs An Overview, Electronic Notes in Theoretical
Computer Science 72 No. 2 (2002)

[22] GXL Graph Exchange Library home page:
http://www.gupro.de/GXL/

[23] JavaCC home page: https://javacc.dev.java.net

[24] Gamma, E., Helm, R., Johnson, R. and Vlissides, J.: Design Patterns -
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995

[25] Paakki, J., Karhinen, A., Gustafsson, J., Nenonen, L., Verkamo, A. I.: Software
Metrics by Architectural Pattern Mining, In Proc. International Conference on
Software: Theory and Practice (16th IFIP World ComputerCongress). Beijing,
China, 2000, 325-332

[26] W. J. Brown, R. C. Malveau, H. W. McCormick III, T. J. Mowbray:
AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis, New
York, John Wiley and Sons, Inc., 1998

[27] D. Beyer, C. Lewerentz: CrocoPat: Efficient pattern analysis in object-oriented
programs, In Proceedings of the 11th IEEE International Workshop on Program
Comprehension (IWPC 2003), pp. 294-295, IEEE Computer Society, 2003

[28] Hervé Albin-Amiot, Pierre Cointe, Yann-Gaël Guéhéneuc, Narendra Jussien:
Instantiating and Detecting Design Patterns: Putting Bits and Pieces Together,
16th IEEE conference on Automated Software Engineering (ASE'01), 2001

[29] R. K. Keller, R. Schauer, S. Robitaille, P. Page: Pattern-based Reverse-
Engineering of Design Components, In Proc. ICSE, pp. 226-235, ACM, 1999

[30] Nija Shi, Ronald A. Olsson: Reverse Engineering of Design Patterns from Java
Source Code, ase, pp. 123-134, 21st IEEE International Conference on
Automated Software Engineering (ASE'06), 2006

[31] CDIF Technical Committee, 1994, CDIF Framework for modeling and
extensibility, Electronic Industries Association, EIA/IS-107, January

