
Magyar Kutatók 7. Nemzetközi Szimpóziuma
7th International Symposium of Hungarian Researchers on Computational Intelligence

 523

Statistical Methods for Morphological Parsers

László Kovács, Péter Barabás
University of Miskolc, IIS, Miskolc-Egyetemváros, Miskolc 3515, Hungary
kovacs@iit.uni-miskolc.hu, barabas@iit.uni-miskolc.hu

1 Introduction

Computational linguistic (CL) covers the statistical and logical modeling of
languages using computer-based software-hardware tools. In the 1960s, the
research activities in computational linguistic were based mainly on a symbolic
approach. The symbolic approach was developed out among others in the works
of Chomsky [2], Harris [5] and Shannon [7]. Their methods use mainly the
technologies of the parsing and artificial intelligence systems. In the shadow of
symbolic approach, a smaller group of researchers stared to work out the
stochastic approach. The main pioneer representatives of this direction are among
others Browing [1] and Wallace [8]. The methods of the stochastic approach used
mainly the Bayesian statistical algorithm to generate the language models.
Although, the stochastic approach had a minor role initially, it turned out in the
following decades, that it should have a dominant importance in the computational
linguistic. Among the most successful stochastic methods can be given the Hidden
Markov Model, the N-gram models, the Finite State models, classification
methods and the artificial neural networks [6].

A basic element in CL is a formal grammar that describes the language
characteristics. Chomsky [3] proposed first to use grammar models based on
rewrite rules. In this approach, the language is given with a set of

a → b (1)

rules where a and b are strings of the language. Using these rules recursively, the
valid sentences of the language can be generated. One of the simplest form of the
rewrite rule system is the context-free grammar [6], where the element a is a
single symbol, thus the output b is independent from the context of the symbol a.
Based on the rule system, it can be verified whether a sentence is valid or not. The
parsers [6] are used to perform validation and to determine the construction
structure of input sentences. The application of the first parsers to the human
languages had minor success. The nature of the human languages posses some
elements which can not be covered with strict automation systems. Thus, the main
difficulties were the ambiguity in usage of the words, the huge set of exceptions
and the very flexible word generation schemes. To cope with these problems, all

L. Kovács et al.
Statistical Methods for Morpholigical Papsers

 524

of the special cases should be encoded into the model. This requires a major extra
cost in time and space. Thus, the applications of the natural language processing
(NLP) methods were tailored first to some limited problem areas.

The first industry products of the NLP systems were the language translators. The
first translators worked on a word to word basis with a limited success. It is widely
assumed, that the translator systems should possess metadata on the context of the
text to be translated. The set of the required metadata depends on the purpose of
the translation.

An important type of parsers used in NLP systems is the morphological parser. In
the most languages, a concept is assigned to several variants of a base word. The
context of the concept occurrence determines which variant should be used. A
morpheme is the minimal unit with meaning in the language [6]. The key
morpheme for a concept is the stem. All of the transformations are defined on the
stems. The stems should determine the base concept. The context is given with
affixes. The affixes give additional meaning of various kinds. Depending on the
location of the affix, the affix unit may be called prefix, suffix, infix or circumfix
[6].

The application of affixes may result in a new concept. In this case, the
transformation is called derivation. If the output belongs to the same concept
family, the transformation is called inflection. In the agglutinative languages, the
inflections are more complex, a stem can be extended with ten or more affixes.

There are several languages which grammar is not too difficult, it has no or just a
few exceptions. In case of these languages the grammar induction process is more
simpler than in languages have intricate grammar like Hungarian language. The
problem of living languages is that the dictionary is not persistent and not static. In
this case the statistical language processing can be a solution. The main statistical
methods to describe a morphological parser are the Hidden Markov Models
(HMM), the N-gram models (NGM) and the Finite State Transducers (FST). The
grammar of the language is encoded in these methods in the structure and in the
parameters of the model.

Based on our experiences, these models provide very high precision for the trained
words, but they have some limitations in the case of untrained words. In this
paper, the description of the main methods and a short outline of a special
morphological parser are given. The HMM, NGM, FST methods and the proposed
new model are compared in a test application. In the test application, the parsers
should learn the inflection for the accusative. The host language is the Hungarian
language which is an agglutinative language.

Magyar Kutatók 7. Nemzetközi Szimpóziuma
7th International Symposium of Hungarian Researchers on Computational Intelligence

 525

2 Finite State Transducer

The Finite State Transducer (FST) is a useful tool in the conversion of strings and
texts. The input pool of this problem area is a set of string pairs (s1, s2). There
exists here an apriori unknown function on the set S of strings:

f : S → S. (2)

The input pool is a training set of this function, i.e.

s2 = f(s1). (3)

The FST structure can be used for several purposes in the management of this
mapping function [9]. The possible application areas:

− FST as recognizer: it can determine if s2 = f(s1) or not

− FST as translator: it generates f(s1) from s1.

− FST as generator: it generates (s1,f(s1)) pairs of words

− FST as relater: it computes the relation between sets.

Structurally, the FST is an extension of the Finite State Automate (FSA). Similar
to FSA, the FST consists of the following elements:

− Q: finite set of states

− E: finite set of directed edges (transition function between the states)

− A: finite set of symbols (alphabet).

There are two special subsets of Q: the set containing the initial state and the set of
final states. The alphabet is built up from two sets: an AI alphabet of input
symbols and an AO alphabet of output symbols. The transition edge is marked
with a (q, i:o, r) triplet where q denotes the start node, the r is the end node, the i
is a symbol from AI and the o denotes an element from AO.

The phonological rewrite rules can be expressed as regular expression with the
help of finite state machines. The FST can be used to handle the two-level
morphology. The {s1} set of input strings is the lexical level, and the output level
is called surface level. The FST is based on a lexicon containing all of the required
grammar transformation rules. If the background lexicon does not exist as it is true
in general case, the system should learn the FST network. It is known that learning
of a general FST is intractable. In the practice, a special case of the general FST,
the sequential FST can provide an acceptable solution. The Sequential Transducer
(ST) is deterministic and they preserve increasing length input-output prefixes.
This restriction is very dominant, thus the model can be used only for very simple
languages.

To provide more general solution, the subsequential transducer (SST) model was
proposed. In this model, a new model element, the state output function was

L. Kovács et al.
Statistical Methods for Morpholigical Papsers

 526

introduced. The output function results in an output strings for every state. The
final output string is the concatenation of the edge output with the state function
output. A good comparison of the ST and SST structure is given in [4] paper. In
the onword form of the transducers, the output substring is assigned to the edges
in such a way that that they are as close to the initial state as they can be. One of
the most efficient algorithm to generate the SST structure the OSTIA method
(Onword Subsequential Transducer Inference Algorithm).

The OSTIA algorithm is based on the following core steps.

− generating a simple structured ST,

− merging some nodes,

− pushing some output elements toward the initial state,

− eliminating all of the non-deterministic elements,

The OSTIA method generalizes the training examples as much as possible, this
may lead to over-generalization.

3 N-grams and Markov Models

In statistical language processing, N-gram model is a widely used method. N-gram
models are essential in speech recognition, handwriting recognition, machine
translation, spelling correction, part-of-speech tagging, natural language
generation and in any task which we have to identify words in noisy, ambiguous
input. The goal is to compute the probability of a word w given some h history, or
P(w|h). The sequence of N words will be presented in [9] paper as

w1 , ... , wn or w1
n

. (4)

The computation the probabilities of entire sequence can be performed using the
chain rule of probability for decomposition [9]:

∏
=

−

−

=

==
n

k

k
k

n
n

n

wwP

wwPwwPwwPwPwP

1

1
1

1
1

2
131211

)|(

)|()...|()|()()(
 (5)

The chain rule shows that the joint probability of a sequence can be computed
from the probability of words given previous words. But using the chain rule
doesn't really help us, because we don't know the way how to compute the
probability of a word a long sequence of preceding words. It can not be estimated
by counting word occurrences following a long sequence of words, because the
language is creative and can be produce sequences never seen before. Thus instead

Magyar Kutatók 7. Nemzetközi Szimpóziuma
7th International Symposium of Hungarian Researchers on Computational Intelligence

 527

of computing the probability of a word given its entire history, the probability of a
word by just a few preceding words is approximated.

The bigram model is such an N-gram model where the probability of a word is
approximated by the preceding word [9]:

() ()1
1

1 || −
− ≈ nn

n
n wwPwwP , (6)

whereas in trigram model this probability is:

() ().|| 1
2

1
1

−
−

− ≈ n
nn

n
n wwPwwP (7)

In general we can make the following approximation:

() ()1
1

1
1 || −

−
− ≈ n

+Nnn
n

n wwPwwP (8)

This property that the probability of a word depends only on the previous word is
called Markov property stated as [10]:

() ()
tit+ti+ttiti+ti+t s=ξs=ξP=s=ξ,,s=ξs=ξP |...|

111111 , (9)

where nξ,,ξ ...1 are random variables.

In a Markov chain, each state is attributed with a finite set of signals. After each
transition, one of the signals associated with the current state is emitted. Thus, we
can introduce a new sequence of random variables ηt, t=1...T, which is the emitted
signal in time t. A Markov model consists of the following elements [10]:

− a finite set of states ;s,,s=Ω n}...{ 1

− an signal alphabet ;σ,,σ=Σ m}...{ 1

− a n x n state transition matrix ();s=ξs=ξP=pwhere,p=P itj+tijij |][1

− an n x m signal matrix ()itjtijij s=ξk=ηP=awhere,a=A |}{

− an initial vector ()iin s=ξP=vwhere,v,,v=v 11]...[

In every discrete point of time, a state transition occurs depending on the transition
probabilities and after each transition. Then one of the signals associated with the
current state is emitted. If a state in the model depends only on the previous state,
the model is called first-order Markov model. When a state depends on more
preceding states, a higher-order Markov model is used. Bigram model is a first-
order Markov model, whereas trigram model is a second-order and N-gram model
is a (n-1)th-order Markov model.

If the sequence of states can not be directly observed and only the sequence of
emitted signals can be measured, the model is called hidden Markov Model. The

L. Kovács et al.
Statistical Methods for Morpholigical Papsers

 528

sequence of states can be then evolved with use of signal matrix, which defines
the probability of an emitted signal in a given state. Let O = O1O2...OT be a
sequence of observation, where Oi is an emitted signal. Hidden Markov models
have three prototypical tasks:

1 estimate the probability of observation sequence, or P(O),

2 determine the most probable state sequence to the given signal
sequence,

3 determine the model parameters λ = (P, A, v) to maximize the
probability of a given signal sequence.

4 Problem of Generalization

One of the main characteristics of a learning system is the capability of
generalization. If the training set is incomplete, the system may meet untrained
cases in the production phase. It can be assumed that the unknown input object has
some common attributes with the other input objects met in the training phase.
Thus, the input objects are similar to each others in some extends. An efficient
learning system is able to detect the common characteristics of an input object and
it can infer the most probable output object. The capability of generalization
makes the learning system to work from incomplete training set too. Of course, in
the case of untrained input objects, the learning system can give only a
probabilistic result which may differ from the real output value. With comparison
of the calculated and of the measured output values for the untrained objects, the
generalization quality of the learning method can be determined. A good
generalization facility is very useful from a practical viewpoint. It has the
following benefits:

− it can work with incomplete training data

− the training cost can be reduced

− it is better suitable for unexpected problems

From the viewpoint of generalization, the FST method can not provide a good
performance. The initial FST tree is a suffix tree of the trained data. During the
generalization phase, the connected nodes with deterministic output edges are
merged into a common node. As the FST is based on a sequential processing
principle, the first decision steps are made at the beginning of the words. If the
training pool has examples with similar prefix parts, the parsing path is lead into
that direction. This decision is most of the times incorrect, as mostly not the initial
part of the words determine the inflection rule but some other parts of the word.
The performed generalization enables only a limited permutation of the character
sequence. As a result, the FST could not provide good outputs in our test result.

Magyar Kutatók 7. Nemzetközi Szimpóziuma
7th International Symposium of Hungarian Researchers on Computational Intelligence

 529

The HMM method, on the other hand, manages the words in a more flexible way.
The basic units of the parsing are the N-grams. To learn the inflection
transformation, the stems are considered as the output words and the inflected
forms are the internal N-grams as the internal states. Based on this required
structure, the set of all possible N-grams in the inflected forms should be known
apriori. As this assumption can not be met in general, only words having known
N-grams can be inferred. Another restriction of the HMM method is that the
length of the inflected form should be no less than the length of the stem forms.
This restriction comes from the internal structure of the HMM as in the Trellis
probability matrix each time step is assigned to one internal state.

Based on these experiences, the outline of a more flexible parsing system was
worked out in the frame of the project. The proposal considers the inflection
transformation as a classification problem. The inflection process is treated as
function:

t: w → w' (10)

The t function can be described with a transformation mask. Based on the
experiences, there exist a set of transformation masks and several stem words may
share the same mask. Thus, the task of the parser is to select the appropriate mask.
In this sense, each stem word belongs to one transformation mask. The mapping
of the stem words to transformation mask is regarded as a classification problem.
In order to provide a flexible classification, a classification lattice is built up from
the training examples. This lattice has a similar role to the concept lattices, thus it
serves to provide an efficient generalization. The generalized masks are generated
with the mask intersection operation. Each parent node has a more general mask
than the child's mask. A problem of this kind of generalization is that a lot of noise
masks are generated. A noise mask means here that it reflects not the real
dependency, it depends on the random distribution of the selected training
examples. To select the core dependencies, the different mask subparts are
weighted based on their location within the mask. Another new element of the
proposed system refers to the cost-effective management of the lattice. In the
initial lattice, the lookup of a new stem word in the lattice finishes if it reaches a
node with unambiguous class assignment. In this case all of the child nodes belong
to this class. It is possible to transform the initial lattice to an exception-centered
storage where the children of the same class are eliminated, only the exception
child nodes are stored in the lattice. According to the test experiences this kind of
parsing provides a better generalization results than the previous methods.

5 Test Experiments

The initial test included only 140 training examples. This is only a very thin subset
of the larger example pool containing about 90000 examples. This larger training

L. Kovács et al.
Statistical Methods for Morpholigical Papsers

 530

pool was generated from an online dictionary with manual entering of the
inflection forms.

The set of untrained words contains ten elements:

U = {gatya, labda, tanár, krumpli, fej, korong, csapat,köd, ló, korom}

The inflected forms of the words are the followings:

R = {gatyát, labdát, tanárt, krumplit, fejet, korongot, csapatot, ködöt,
 lovat, kormot}

In the initial FST test, the following result was obtained:

RFST = {g, l, tanítót, k, fecskét, k, csattot, kö, lócát, k}

This means a 0% precision value. The actual FST graph contained 686 nodes.

In Hungarian language 36 (including space) different character can be found, thus
the number of possible trigrams is 46656. The 140 training examples contain 570
different trigrams which is 1.2 percent of all of the possibilities. As test results
show the inflected form of the teaching nouns was generated with 100% precision
value and working with 570 nodes was very fast.

Test results are contrary in case of testing with set U of words. The precision value
was 0%, because all of the inflected words were in form faaa where number of a
is equal to the length of the estimated inflected form-1. This poor result has more
reasons:

− HMM contains only those states and signals which derived from teaching
datas (570 different trigrams), thus in test words there are such trigrams
which are not present among HMM states and signals,

− a state which is not present among HMM states has no signals and a
signal which is not present among HMM signals has no states,

− the initial values in state transition matrix and signal matrix are zero for
all cells.

The base problem is that there are a few states and signals in HMM and if trigrams
of testing words cannot be found among the signals of HMM, the result will be
poor.

Another test examines the behavior of the model trained by words consisting such
trigrams which can be found among signal values of HMM. The number of
teaching nouns is 62. These words came from a webcorpus. The number of good
inflections is 42, it means 67.6% precision value. It seems to be much better, but
the teaching data contained all of the well inflected words. Thus the precision of
inflection did not improve.

With initializing the state transition matrix the precision of inflection got better. In
a web corpus the most frequent 100000 words are given. The state transition
matrix was initialized by the trigrams of these words. It means approximately

Magyar Kutatók 7. Nemzetközi Szimpóziuma
7th International Symposium of Hungarian Researchers on Computational Intelligence

 531

15000 states. It is a bit lot, thus in testing the most frequent (occurs more than
100) 1800 trigrams is used. The number of good infections would be 49, it means
that the precision increased with 11% and 7 new words could be inflected well.

In case of such a few teaching data the last column of the Viterbi matrix can
contain more maximum value. The precision would be better when the most
probable path was given as output ended with one of a state with maximum
probability. The number of good infection increased to 53, it means 85% precision
value, 4 newer words could be inflected.

In summary, the achievement is as follows: from 62 words 20 were untrained and
at the end of refinement 11 of them have been inflected well, it means 55%
precision value. The precision can be increased by estimations of signal matrix
and naturally by the increasing of teaching data.

Regarding the new proposed method, the initial test yielded in the following
output words:

Rprop= {gatyát, labdát, tanárt, krumplit, fejt, korongot, csapatot, ködt, lót,
 koromet}

This means a 60% precision value. The missed guesses are here more similar to
the real values than in the other methods. The actual graph contains only 87 nodes.

It can be seen that the proposed method provides a promising performance. Thus
in the project, the further and deeper investigation of the HMM and of the new
method will continue.

References
[1] Browing, M.: Null Operator Constructions, Ph.D. thesis, MIT, 1987
[2] Chomsky, N.: Aspects of the Theory of Syntax, Cambridge, MIT Press,

1965
[3] Chomsky, N.: Formal properties of grammar, 1963
[4] Gildea, D., Jurafsky, D.: Automatic Induction of Finite State Transducer

for Simple Phonological Rules, Meeting of ACL, 1995
[5] Harris, Z.: Methods in Structural Linguistics, University of Chicago Press,

1951
[6] Manning, C., Schütze, H.: Foundations of Statistical Natural Language

Processing, MIT Press, 1999
[7] Shannon, C.: Prediction and Entropy of Printed English, Bell System

Technical Journal, 1951
[8] Wallace, C.: Seneca Morphology, International Journal of American

Linguistic, 1960
[9] Jurafsky D., Martin J. H.: An introduction to Speech Recognition,

Computational Linguistics and Natural Language Processing, 2006
[10] Krenn, B., Samuelsson C.: The Linguistic's Guide to Statistics, 1997

