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Abstract: We extend a multiple expert, multiple criteria decision aiding technique
on an ordinal evaluation scale, originally proposed by Yager [12]. This extension is
heavily based on the definition of logic and averaging operators on such scales. We
can show a variety of these operations, so the decision maker can have some freedom
in choosing the most appropriate one for his/her special purpose. In particular,
the case of smooth underlying operators (t-norms and t-conorms) is handled with
special emphasis. The applicability of the results is illustrated by an example.
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1 Introduction

Complex decision situations, when multiple experts take part in evaluation
of alternatives and such an evaluation is based on multiple criteria, are rather
difficult to be handled. In such processes, one of the main issues is to obtain
a reasonable aggregation of experts’ evaluation in order to get a global score
of each alternative by each expert. Next, we want to have an overall score for
each alternative to be able to choose one or more “best” of them.

One of the usual evaluation scales is a subset of real numbers (e.g. a
compact interval such as [0, 1]), with its rich algebraic structure. However,
Yager [12] emphasized an undesirable effect of such a numeric scale called the
tyranny of numbers: “ ...the numbers take a life and precision far in excess
of the ability of the evaluators in providing these scores”. At the same time,
Yager suggested an approach of using a finite ordinal scale for the evaluation
instead of a subset of real numbers. Such an ordinal scale can represent simple
linguistic terms like None, Very Low, Low, Medium, High, Very High, Perfect,
in accordance with the observation of psychologists that “human beings can
reasonably manage to keep in mind seven or so items” (Yager ([12], Miller
[10]). We will use this typical scale S

S ={N,VL,L,M,H, VH, P}, (1)
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where the letters refer to the previous linguistic terms, and they are listed in
an increasing order.

To define reasonable aggregation functions on an ordinal scale, we employ
an idea of Fodor and Roubens [4], and also the original approach of Yager [12].
The combination of these two sources will provide us a variety of acceptable
aggregation functions which can be used in complex decision problems. For
a similar approach to discrete preference structures we refer to De Baets and
Fodor [1]

2 Problem Formulation

We denote by N the set of positive integers. For any ¢ € N, let K, be the set
of integers from 1 to ¢; that is, K, = {1,2,...,¢}.

Let m,n,q,r € N, A = {a1,a9,...,a,} be a set of alternatives, E =
{e1,e2,...,e,} be a group of experts (evaluators), S = {s1,s2,...,54} be
an ordinal evaluation scale with the linear ordering s; < s5; <= i < j,
(i, € Ky), C = {c1,¢2,...,cm} be given criteria for the evaluation of the
alternatives. Denote P (c;) € S the rating of the ith alternative on the jth
criterion by the kth expert, and w(c;) € S the importance (weight) associated
with criterion ¢; (i € K, j € Ky, k € K,).

First, we want to determine the global score P;; of each alternative a;
by each expert e, (i € K,,, k € K,). That is, we are looking for a function
F:S™ x 8™ — S such that Py, = F(Pi(c1),. .., Pir(em);w(cr), ... w(em))
for i € K, k € K,.. Such a function F' can be interpreted as an averaging
operator. Typically, if the evaluation scale is a subset of real numbers then F
is chosen as the weighted arithmetic mean. Because in an ordinal scale we do
not have operations like addition, the main difficulty is to find appropriate
forms of F.

Second, after having the values Pj;, we want to combine experts’ opinion
in order to find the overall evaluation of alternatives.

3 Smooth De Morgan Triplets on Finite Chains

Since continuous operations play a key role when the evaluation scale is a
compact interval, in this section we briefly summarize the corresponding no-
tion (called smoothness) on a finite totally ordered evaluation scale (like S
in (1) above). In this section we use notation different from the rest of the
paper, to be able to present these results in the spirit of their generality.

Assume that £ = {xg,x1,...,Zn, Tpy1} is a totally ordered finite set of
n + 2 elements that are indexed increasingly: o < 1 < ... < Z, < ZTp41,
according to a relation <. For z € £, let ind(z) denote the number of elements
y such that y < x.

In the sequel, we use the notations 0 = zg and 1 = x,,11. For any x;,z; €
L such that z; < z;, let us define (x;,z;) = {zr € L | x; 2z, < x;} , which



can be considered as the discrete “closed interval” of points in £ between x;
and z; (note that < y if and only if either z < y, or z = y).

3.1 Strong Negations

First we consider strong negations on L. That is, decreasing functions N :
L — L with A(0) = 1 that are involutive: N(N(z)) = z for all z € L.

Theorem 1. [9] The unique strong negation N on L = {xo,...,&ni1} is
given by
N(@i) = Tn-iv1 ,

for all x; € L.

Clearly, this strong negation on £ corresponds to the standard negation
x +— 1 —x on the unit interval. Notice however that A does not have a fixed
point (i.e. an z € £ such that N'(z) = z) when n is even.

3.2 Smooth t-norms and t-conorms

Mayor and Torrens [9] have determined all associative, commutative, increas-
ing binary operations 7 : £ x £ — L that satisfy 7(1,1) = 1, and for all
x,y €L

=y <= 3Fel)(z=T(y,2)) . (2)

Such a binary operation 7 is called a smooth t-norm on L. Indeed, it can
be seen that 7 satisfies all the four axioms of t-norms, and condition (2) is
just equivalent with the continuity of 7 when it is considered on [0, 1]. For
more details on the smoothness property of binary operations, we refer to
[8,6,7]. A smooth t-norm on £ is called Archimedean if T (z,x) < x for all
x € (z1,2n) [9].

Theorem 2. [9] The only Archimedean smooth t-norm on L = {xo,...,
Tny1} 1S given by

Titj(ny1) , i+j>n+1

T (zi,zj) = { ; (3)

0 , otherwise
for all x;,x; € L.

One recognizes that the above t-norm corresponds to the Lukasiewicz
t-norm on [0, 1]; hence, it is denoted by 77, in the sequel. As a consequence,
one essential difference between the finite case and the usual unit interval is
that there exists only one Archimedean smooth t-norm on a given finite L,
and it depends basically on the cardinality (i.e., the number of elements)
of £. No counterpart of any strict t-norm (like the product on [0,1]) exists
on L.



If, in the remaining case, 7 is a non-Archimedean smooth t-norm then it
has idempotent(s) other than 0 and 1: 3 x; € (x1,x,) such that T'(z;,x;) =
x;. Then T (xg,xy) = Tmin{k,e} if there exists an idempotent z; between xy
and x,. In any other case, there are two consecutive idempotents x;, z; such
that z; < 2,2, = x;, and

w04+ k<i+j

T(Ik, Ig) = {

ZTo4k—i , otherwise

Denote by 7js the smooth t-norm on £ which corresponds to the minimum;
it is the only t-norm that has all elements as idempotents. Moreover, there
are exactly 2" different smooth t-norms on £ (where [£| =n+2) [9].

Smooth t-conorms can be obtained by duality w.r.t. the unique strong
negation N. Obviously, the only Archimedean smooth t-conorm can be ob-
tained from Eq. (3) as follows:

:c¢+j,ifi+j<n+1
Se(wi, xj) :{ 7 (4)

1 , otherwise

for all z;,z; € L.

A triplet (7,8,N) on L is called a smooth De Morgan triplet if T is a
smooth t-norm on £, N is the unique strong negation on £ and S(z,y) =
N(T (N (z),N(y))) is the dual of 7. Obviously, such a De Morgan triplet de-
pends only on the choice of the smooth t-norm 7. The triplet L = (77, S, N)
is called the Lukasiewicz triplet.

4 Scores of the Alternatives

In this section the methodology proposed by Yager [11] is extended. Our
goal is to find the score of each alternative by each expert. Intuitively, the
following principles seems to be acceptable in order to find the aggregation
function:

e criteria having low importance should have little effect on the overall
score;

e if a criterion is important then it must have a good score;

e the previous statement is applied to all criteria.

Based on such assumptions, Yager [11] proposed the following way of
aggregation (i € K,,, k € K,):

Pix = /\ W (w(e))) V Pix(cj)], (5)

where N : S — S is the standard negation defined on S (see Theorem 1
above).



If we look at the formula in (5) then we can verify the above principles.

From a formal point of view, the operation N'(x) V y is nothing else but
an implication on S (x,y € S). Updating Definition 1.15 from Fodor and
Roubens [4], a function Z : S? — S is called an implication on S if and only
if 7 satisfies the following conditions:

1. If © < z then Z(x,y) = Z(z,y) for all z,y,z € S.
2. If y <t then Z(z,y) < I(x,t) for all z,y,t € S.
3. Z(0,z) =1 for all z € S.

4. Z(z,1) =1 for all z € S.

5. 7(1,0) = 0.

Now we can extend (5) by using an idea of Fodor and Roubens [4]. Two
classes of idempotent and monotonic aggregation operations were suggested
on the closed unit interval (see Proposition 5.4 in the cited book). According
to those formulas, we can define the corresponding aggregations when only a
linear scale S is considered.

Suppose that 7 is an implication on S satisfying the following additional
conditions:

6. Z(1,z) =z for any = € S.
7. Z(z,y) =y forall z,y € S.

Moreover, let A/ be the standard negation on S. Consider the following two
classes of operations on S:

¢
Ma(ty, o te) = )\ Z(wi, ta),
i=1
¢
M\/(th cee 7t€) = \/ N(I(whN(tz))?
i=1
where wy,...,wy € S are weights such that \/f:1 w; = 1. Under these condi-

tions, thus defined M, and M., are idempotent, nondecreasing functions. In
fact, M, can be used in (5) in order to define the scores Py, (i € Ky, k € K,.):

Pik = /\ I(’LU(Cj), Pik(Cj)). (6)

Now we list some implication functions that satisfy conditions 1-7 above.
Note that all are induced by well-known fuzzy implications defined on [0, 1].
The original formula (5) corresponds to Z;.



T1(5i555) = Smax(q—i+1,5)>

1 ifi<j
Io(sis 85) = {Slnax(q—i+17j) otherwise,

IS(Siv sj) = Smin(q—i+4,q)»

Smax(q—i+1,5) ifi=gq
I4(Si,8j) = or j = 1,
1 otherwise

1ifi<j
I5(si,55) = {Sj otherwise ’
1 otherwise °

Zo(si, 55) :{

In order to compare the behavior of the aggregation function in (6), con-
sider the following example of Yager [12].

Suppose we have six criteria, and the standard seven-point evaluation
scale (1). The evaluation of alternative a; by expert e, on each criterion is
given in the following table:

Criteria: c1Cy C3 €4 C5 Cg
Importance: P VH VH M L L
Score: HM L P VHP

Denote o; the aggregated value of these data when we use the implication
Z; in (6) (j =1,...,6). After a routine calculation, we obtain the following
results:

ayr =ay=a5 =L,
OégZM,

044:046=H.

5 Synthesizing Experts’ Opinion

After finishing the process of the previous section, we have a vector of eval-
uations

(Pilypi2a-~-7PiT) es” (7)
for each alternative a; € A, i € K,,. In order to get an overall evaluation P;
for alternative a; € A (i € K,,), at the beginning we follow Yager [12]. That
is, we define a function

Q:{0,1,....,r} — S



so that the value Q(i) € S indicates the degree to which we want to select
an alternative when a set of ¢ experts is satisfied with that alternative.

Although the definition of ) is completely subjective, there are some
rationality conditions that @) should satisfy (see Yager [12]):

1. If no experts are satisfied then the degree should be 0 (the lowest in S):
Q(0) = 0.

2. If all experts are satisfied the degree should be 1 (the highest in S):
Q(r)=1.

3. If more experts agree, the degree should increase:

i > j implies Q(i) = Q(j).

In order to define a function Q which “ ...can be said to emulate the
usual arithmetic averaging function ... (Yager [12])”, we depart from Yager’s
proposal, and consider a monotone nondecreasing function ¢ from the closed
interval [0,r] to the closed interval [1,q] such that ©(0) = 1, ¢(r) = ¢. If
Int[a] denotes the integer value that is the closest to the real number a, we
can define a mapping b: {0,1,...,7r} — {1,...,q} by

b(i) = Intlp(d)] (i € {0,...,7}),
and finally @ by
Qp(i) = spy, 1€40,1,...,7}.
Note that the number of different mappings b with 5(0) = 1 and b(r) = ¢ is

equal to (r j:z; 2 > One of those was defined by Yager [12] as follows:

by = Int [1 +i4 1] .
r
Denote the corresponding function @ by Qy .
The next step is the reordering of the components of the evaluation
vector (7) in descending order. Denote B;; the jth highest score among
(Pi1,...,Pir): Byt = Bia = ... = By.. To find the overall evaluation, Yager

[12] proposed to use the following formula:
Pi=\/[Qy(j) A Bi]. (®)
j=1

A careful study of this formula reveals that we can use the aggregation
My introduced by Fodor and Roubens [4], with any implication and the stan-
dard negation on S. That is, in general we can define the overall evaluation
of alternative a; (i € K,,) by

P =\ IN(Z(Qu (1), N (Biy)))] - (9)
j=1

The interested reader can compare the results of the six different impli-
cations by using the same set of data.
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Concluding Remarks

We have described some important elements of a decision process when eval-
uation of alternatives is based on a non-numeric linguistic scale. Such scales
(equipped especially with smooth De Morgan triplets) have also been intro-
duced into preference models (see De Baets and Fodor [1] for further details).
One of our main goal was to show a class of appropriate aggregation functions
like (6) and (9). On the basis of the final ratings P; of alternatives, the de-
cision maker can make a selection, taking into account some other (possibly
subjective) criteria as well.
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