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Abstract: The present report gives the basic formulas on the formulation of the
mechanical/mathematical models of the stability of asymmetrically built and loaded
circular three-layered sandwich-type plates with (constructionally) orthotropic hard and
transversally isotropic soft layers. Using tensor formalism the corresponding governing
equations and natural boundary conditions are derived. As example for the stability of
circular sandwich plate with isotropic hard layers the basic equations and - at Navier-type
boundary conditions - method of analytical solution is given.
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1 Formulation of the Problem

Our foregoing research dealt with the stability of regularly multi-layered [5] and

asymmetrically built and loaded three- and multi-layered rectangular sandwich

plates [4], [6]. In the latter case - continuing the proceedings - to the formulation

of the stability task it was supposed, that

e material of all layers are elastic and orthotropic (transversally isotropic) or in
the case of constructive anisotropy the layout of the hard layers permits to use
the "effective stiffness theory", i.e. by "smoothing" (energetically) the stiffness
characteristics of the reinforced layers the stiffness of equivalent flat layers can
be determined,;
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o the "hard" layers constitute elastic plates obeying the Kirchhoff-Love laws;

e in the "soft" layers the antiplane shear stresses and in the "transversally soft"
layers moreover the antiplane normal stresses are also characteristics and all
these are constant across the soft layer thickness and proportional to the
corresponding strains.

e according to the loading of the plate it is supposed, that the hard layers are
loaded with a constant normal to the boundary membrane forces only (the
shearing membrane forces are equal to zero), but this forces could be different
- in particular case zero - for different layers and directions.

In the following for the investigations of the stability of circular sandwich plate all
these suppositions are saved.

The main differences in the tasks of the stability of the rectangular and circular
sandwich plates are in the geometry. Many of authors at formulation of different
tasks of circular plates for deriving the corresponding strain components simply
are going out from their form in the Descartes coordinates and use transformation
rules between the coordinate systems [2], [3]. This method can be work well in
simply tasks, but in the case of more complex structures some members of the
basic equations can be missed. To avoid this problem in the given paper by
formulation of the mathematical- mechanical model of the stability of circular
sandwich plate from the beginning the correct tensor formalism was used, based
on the following formulas:

Descartes coordinates: Polar coordinates:
X'=xx'=yx' =z X'=rx’'=0x=z2
2
X
A X!
2
X! W X
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Position vector of the material points: r= g(x“, x3)= f(x“)+ x‘a,
Derivatives and basic unit vectors:
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Christoffel's symbols:

Q= rkTgm (ka I,m=a,30= 1,2)
1 1 def
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I,=-x"=r; 1"2,—1"[2_?—?, ,=b,=0; TI;=b=0
=8, ta;,+a,,=3,, because:

a,, =-bh%a, =0 (Weingarten formula),

a; =Ia, =0.

k 3 3
a,,=Iya = a +b,a, =T,a (Gauss formula)

ap =38

— — _T1° — — : '
a,=a,,=3a,-I,a = b,a,=0 (Weingarten's law)

Covariant derivatives on the middle surfaces of the hard layers:
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2 Mathematical — Mechanical Modeling

Let us investigate the stability of the asymmetrically built circular sandwich plate
of radius ry with isotropic hard and transversally isotropic soft layers of thickness
h, (A=1, 2) and s correspondingly, loaded by normal distributed edge forces
N,'(A=1, 2) (Fig. 1.).
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Using the common designations of the mathematical and physical quantities and
the basic assumptions for the displacement — strain fields and constitutive laws we
have:



2.1  Displacement fields:

For hard layers:
» 2 2
u, u u
u' ={u, | =[rv| =|rv*
u, w w

_ def
u; =u’ +x0’

ul=w"; (A=12)

/— Lame's coefficients (H;=Hs=1, H,=r)

u=Hu,

Ko phisical coordinates

vector coordinates

For soft layer:

a U, u, —u,
T={r7 |=|rv, |[+=2r(v,-V,)
S
W w, W, —W,

2.2 Strain fields:

For the hard layers - because of that’s plane-shell-type:

1
€ = E(ua“ﬁ + ug“a )s Kop =
and by the Kirchhoff - Love law: €,=0,
so the rotation of the layer’s normal 0, =-w_ -b
and:
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For the soft layers:
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2.3 Constitutive laws:

For hard layers: & = A-c,

where:
8, ==, a, =- vk, (ik=123i%k),
E, E,
N I
* GZS ’ ® Gl3 , ° G12 ’
and: v.E, =v,E, (a,=a,),or
4 E
c=B-g, where: B=A >b, = L b,,
1 v12v21
For the soft layer:



2.4 Generalized constitutive laws:

o 3
€5 =€, T XK,

For hard layers:
11 11
811 Kll N M
g =e+X’k=|8, |[+X|K, |, [od’=N=|N?|, [ox’d’=M=|MZ|,
812 Klz N12 M12

where C, K, D are stiffness matrices of the hard layers. Matrix K express the

coupling effect between the stretching and bending of the hard layers, which effect
is usual for the (constructionally) orthotropic layer [4],[6].

For the soft layer:

G:SB:Sf , ES:SR:51S ,
—dg —dg
vl!‘G .(,J. 33
C,=C, =5sB, C,, =5s"R,
-l-:ls C—:Vl3 O 0 713
N=|T#|=| 0 C~23 0 |- Yo |s
N33 O O C~33 733

Relations between the physical and tensor coordinates:
N, =N", N,=rN* N,=r’N*%.
M, =M" M, =rM* M, =r’'M?%

T o5, T, =rT% N =R°.

3 Formulation of the Boundary-value Problem

Following the method given in [1],[4] the governing equations and natural
boundary conditions of the given task in the frame of our suppositions can be
derived by using the Trefftz variational principle for the functional of total
potential energy of the sandwich plate. The corresponding formulas are as follows:



3.1 Energy relations:

The strain energy densities for the hard and soft layers (missing the label of the
hard layers: A):

1 ~ 1 e e e
du =E(G”8“ +o%¢,, +0%,), dU =E(r”y13 +T87,, +TY,),

after integration of which for all the volume of the layers and calculating also the

ap

work of external forces N by the formulas:

3-[dude, 3 =[ddx, u=[[3a G=[[Dea L=[[3.da
fovoc. 3 -fomnu-[Pan 0= [[en ]
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BL:E[N Uyt 2N (U,) (Uy) + N (u,,)?
we get the total potential energy of the plate as the functional to be minimized.

A=2

1=>(U,-L)+0.

=1

3.2 Variational principle:

The Trefftz variational principle: S(SfUO): 0, where 32U, =1 (i.e. the second

special variation of the total energy for the neutral equilibrium state is equal to the
total potential energy for the real small displacements at bifurcation) was analyzed
and used for derivation of basic equations of stability and vibrations of regularly
multilayered plates by BOLOTIN [1] and also by the author [4,5,6]. In our case:

51(u, ,W>:ZZZ(8U,V —58L,)+80 =0, where: 8U, = U[N “8u,, — M “ﬁavauHBL ,

A=l !

SU = ”{—é(—l)"(f”éiuk FIT 20" + I\~1238W’“)+C—;('IT”8W)'HI +T 28w )}dA,

(A)

8L, = [Ny -ow'dA, (a.B=12).
(A)



Using the Gauss - Ostrogradsky theorem: ” c ®VdA=§g -nds  for
= =

A
transformation of members having derivatives of displacement variations for the
Ist variation of the functional I<uu , W> we get:

31{u,, ,w) = ﬂN “n,du, —M“ndw, + (|\/| P on, = Nw, o, +
L

+%T~“3 n, )SW]‘ﬂ{[N “lp +%(—1))‘Twu3]6uu Moy, +

(A)
+ (N “ﬁwHB)Hu + & T+ L1 N pw jda=o.

Using relations between the physical and tensor coordinates from section 2.4 we
get the basic equations in physical coordinates.

3.3  Governing equations: (For the A-th layer)

1. N”+1NM+1(Nr—N9)+(—1)’~lﬁ =0,
r r S
2 1 Ll
2. N,UV,+?N,O+?NOYO+(—1) ;Tozo,
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where §= I\hl,varJr&wHO + &wuﬁN—;’wHO .
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3.4  Natural boundary conditions:
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Natural B.C. at ry = const.:
1. N, =0, 2. N, =0, 3. M, =0,

or

C. ~ - -
4' Mrr+l(Mr96+Mr_M9)+_kTrz_NrWr_lNr6W9:O'
’ r ’ S ’ r ’

3.5  The boundary value problem using tangential
displacements potential functions:

In the case of the boundary value problems for the rectangular sandwich-type plate
it was shown [ ], that the governing equations can be simplified by using potential
functions for the tangential displacements of the hard layers. Following this
method — by quiet complicated calculations — it was proved, that taking potential
functions ¢ = @(r,0), v =wy(r,0) for the tangential displacements u = u(r,0),

vV =V(r,0) in the form (labels: A of the hard layers — where to write them is not

necessary — are missed):

1 1
u:(P4r+_\V<e’ V:_(P,q_\V.r
r r

the first two equations of section 3.3 can be written as:

0 0 0 0

—.]+—=[2.]= — . |+=[2.|=
(RESSENGS E ) BRI

and therefore: [1.] = 0 and [2.] = 0 should be from which we get the first two
basic equations written in potential functions. Introducing these functions also into
the 3.-rd equations of section 3.3 finally we get the boundary value problem with
these functions in form:

3.5.1 Governing equations:

[L]  CAg, +(-1)"Ble, ¢, +(cW, +c,W,)]=0,

l_v),

[2.] C, Ay, +(=1)"Bly, —y,]=0,

[3]1 D,AAw, —(-D*R(w, —w,)+ N/Aw, —c,BA[p, — ¢, +(c,W, —C,W,)] =0,
1 1 1 . .
where: ¢, = E(h" + s) and AQ)=(0,+-0,+—0, isthe Laplacian.
w TVl

Advantage of these equations is the separation of them for w, ¢ and v .
3.5.2 Boundary conditions - simply supported edges:

r=r: w =0, M'=0, N'=0, v'=0, (A=12).



Writing out these conditions (missing the label: 1) after some transformations we
have:

1. (w=0) w=0,
1-v
2. (M, =0} Aw—r—z(rwyr +wW,,)=0.
1-v
3. (N, =0): A(p—r—z(r(p_r +y,)=0,
1
4, (VZO): ?(p‘o _W,r :05

4 Sample solution for regularly built plate

For the control of basic equations derived above let us see the stability of a
classical circular sandwich plate with equal thickness of isotropic hard layers
(ho=h = const.) and transversally isotropic core-layer of thickness: S. The
material characteristics are as usual, and given below in the formulas:

4.1 Material parameters:

Eh 1-v
. C,=vC, C“:T

12
Eh’ 1-v

D11 = D22 =D= m, Dlz = VD, D66 = > D.

4.2 Instability conditions:

C

ll:CZZZC:

In the given case atisymmetric and symmetric forms of instability can be separated
by the following conditions and the corresponding equations are:

421  Antisymmetric: w, =w,, ¢, =-0¢,, y,=-y,

1. CA¢p, —2B(9, +cw,) =0,

2. DAAw, —2BcA(p, +¢cw,) + N Aw, =0,
1

3. E(l—v)CA\y1 -2By, =0.

4.2.2  Symmetric: W =-W,, ¢ =0, VY, =V,
1. Ap, =0,
2. DAAW, +2Rw, + N Aw, =0,

3. Ay, =0.



4.3  Solution at Antisymmetric conditions:
Taking the solution functions in forms:
¢, =DPZ(r,0), vy, =VYZ(r,0), w, =W Z(r,0) where: AZ=1Z(r,0),

from the set of equations of section 4.2.1 we get the characteristic equation of
the problem:

g(N,) =AM -b)(A\ +2a,A—c,) =0,
where parameters a,, b, c, depend from the system parameters and the load N,:

aNIR[Nr_@_zBCZJ’ b0:£, C, :&_
2 C (1-v)C CD

Roots of this equation are:

A, =0, A,=b,>0, A,=-a,+b,>0, A, =-a,—-b, <0,

N
where: b, = (a,ﬁ +c, )7

Using these roots at the determination of the parameters @, ‘¥, W in general
solution functions we found, that:

®, = 2B, ¥, =0, W, =C1, - 2B, if (k=134),
D, =0, ¥, =1, W, =0, if (k=2
Taking %, =k, A, =k2, A, =k2, A, =—k? and

using the corresponding solutions of equation AZ-AZ(r,0)=0, the general
solution we get in form:

¢, =2Bc[Ar" + Al (k,r)+ A J, (k,r)]-sin(nB), v, =AI, (k,r)-cos(nd),

W, =[~A2Br" + A (Ck> —2B)I_(k,r)+ A, (~Ck> —2B)J_ (k,)]- sin(nd).
where 1. (kr), J,(Kr) are the Bessel functions of 1st and 2nd kind.

4.3.1  Algorithm for the determination of the critical force: N

Putting general solutions (¢,,y,,w, ) into B.C. of section 3.5.2, we get a
set of linear homogenous equations for the determination of constants A, :
S-A=0. Condition of nontrivial solution of this equation is: det[S(N, )] =0.

Simultaneous solution of this equation with the characteristic one gives eigen-
values of the problem, minimum of which is the critical value of loading: N



4.3.2  Numerical investigations

On the basis of computer code, written for the given algorithm, the shortly shown
results have been got. At control calculation (basically for one of hard layers) for

Basic Data: o
Hard faces:

E =200000 [MPa],
v=0.3, r,=0.5 [m],
h =0.002 [m],
Transversally soft core:
G= 10 [MPa], s=0.01
[m]

Fisure of ¥ = DETCNr3 function

]
L B
I IR

¥ = DETCNv) 7 DETA function

]
TT T T[T 1T
NI AN

(At control calculation: ol L L L L
G=E/IE+10 > G=0)

®
W
s
@
3
)

Loadins pavameter: x = NDR = <Ra~2-D3%Nr

Min. root = Critical loading parameter these results gives: X1 = NDR = 2.048914,
from which the critical value of radial UD force: min N, = N: = 2.460394E-03
[N/m], as in the literature.

Conclusions

Using tensor formalism the corresponding governing equations and natural
boundary conditions are derived. As example for the stability of circular sandwich
plate with isotropic hard layers the basic equations and - at Navier-type boundary
conditions - method of analytical solution is given.
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