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Abstract: The present report gives the basic formulas on the formulation of the 
mechanical/mathematical models of the stability of asymmetrically built and loaded 
circular three-layered sandwich-type plates with (constructionally) orthotropic hard and 
transversally isotropic soft layers. Using tensor formalism the corresponding governing 
equations and natural boundary conditions are derived. As example for the stability of 
circular sandwich plate with isotropic hard layers the basic equations and - at Navier-type 
boundary conditions - method of analytical solution is given.   
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1 Formulation of the Problem 
 
Our foregoing research dealt with the stability of regularly multi-layered [5] and 
asymmetrically built and loaded three- and multi-layered rectangular sandwich 
plates [4], [6]. In the latter case - continuing the proceedings - to the formulation 
of the stability task it was supposed, that 
• material of all layers are elastic and orthotropic (transversally isotropic) or in 

the case of constructive anisotropy the layout of the hard layers permits to use 
the "effective stiffness theory", i.e. by "smoothing" (energetically) the stiffness 
characteristics of the reinforced layers the stiffness of equivalent flat layers can 
be determined; 
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• the "hard" layers constitute elastic plates obeying the Kirchhoff-Love laws;  

• in the "soft" layers the antiplane shear stresses and in the "transversally soft" 
layers moreover the antiplane normal stresses are also characteristics and all 
these are constant across the soft layer thickness and proportional to the 
corresponding strains. 

• according to the loading of the plate it is supposed, that the hard layers are 
loaded with a constant normal to the boundary membrane forces only  (the 
shearing membrane forces  are equal to zero), but this forces could be different 
- in particular case zero - for different layers and directions. 

In the following for the investigations of the stability of circular sandwich plate all 
these suppositions are saved. 

The main differences in the tasks of the stability of the rectangular and circular 
sandwich plates are in the geometry. Many of authors at formulation of different 
tasks of circular plates for deriving the corresponding strain components simply 
are going out from their form in the Descartes coordinates and use transformation 
rules between the coordinate systems [2], [3]. This method can be work well in 
simply tasks, but in the case of more complex structures some members of the 
basic equations can be missed. To avoid this problem in the given paper by 
formulation of the mathematical- mechanical model of the stability of circular 
sandwich plate from the beginning the correct tensor formalism was used, based 
on the following formulas: 

Descartes coordinates:     Polar coordinates:   
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Covariant derivatives on the middle surfaces of the hard layers: 
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2 Mathematical – Mechanical Modeling 

Let us investigate the stability of the asymmetrically built circular sandwich plate 
of radius r0 with isotropic hard and transversally isotropic soft layers of thickness 
hλ (λ=1, 2) and s correspondingly, loaded by normal distributed edge forces 

11
λN (λ=1, 2) (Fig. 1.). 

 

 

 

 

 

 

Fig. 1. 

Using the common designations of the mathematical and physical quantities and 
the basic assumptions for the displacement – strain fields and constitutive laws we 
have: 
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2.1 Displacement fields: 
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2.2 Strain fields: 

For the hard layers - because of that’s plane-shell-type: 
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Lame's coefficients (H1=H3=1, H2=r) 

vector coordinates

For hard layers: 
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For soft layer: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
ξ

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

AB

AB

AB

A

A

A

ww
)vv(r

uu

s
w
rv
u

w~
v~r

u~

u~



  
,r

,r
,

2
22

r12

r11

θθ

θ

κ=κ

κ=κ
κ=κ

  

.
r

w
r
w

,
r

w

,w

r,
2
,

r,

,
r

rr,

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=κ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=κ

−=κ

θθ
θθ

θ
θ

θθ

 

 For the soft layers:       
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2.3 Constitutive laws: 

 For hard layers: ,A σ⋅=ε  where: 
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2.4 Generalized constitutive laws: 
 For hard layers:   αβαβαβ κ+ε=ε 3* x , 
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where DKC ,, are stiffness matrices of the hard layers. Matrix K express the 

coupling effect between the stretching and bending of the hard layers, which effect 
is usual for the (constructionally) orthotropic layer [4],[6]. 

 For the soft layer: 
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Relations between the physical and tensor coordinates: 
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3   Formulation of the Boundary-value Problem 

Following the method given in [1],[4] the governing equations and natural 
boundary conditions of the given task in the frame of our suppositions can be 
derived by using the Trefftz variational principle for the functional of total 
potential energy of the sandwich plate. The corresponding formulas are as follows: 

 



3.1 Energy relations: 

The strain energy densities for the hard and soft layers (missing the label of the 
hard layers: λ): 
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we get the total potential energy of the plate as the functional to be minimized. 
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3.2 Variational principle: 
The Trefftz variational principle: ( ) ,00
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special variation of the total energy for the neutral equilibrium state is equal to the 
total potential energy for the real small displacements at bifurcation) was analyzed 
and used for derivation of basic equations of stability and vibrations of regularly 
multilayered plates by BOLOTIN [1] and also by the author [4,5,6]. In our case: 
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Using the Gauss - Ostrogradsky theorem:  ∫∫ ∫ ⋅=∇⊗
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Using relations between the physical and tensor coordinates from section 2.4 we 
get the basic equations in physical coordinates. 

3.3 Governing equations: (For the λ-th layer) 
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3.4 Natural boundary conditions: 
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 Natural B.C. at r0 = const.: 
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3.5 The boundary value problem using tangential   
  displacements potential functions: 

In the case of the boundary value problems for the rectangular sandwich-type plate 
it was shown [ ], that the governing equations can be simplified by using potential 
functions for the tangential displacements of the hard layers. Following this 
method – by quiet complicated calculations – it was proved, that taking potential 
functions ),(),,( θψ=ψθϕ=ϕ rr  for the tangential displacements ),,( θ= ruu  

),( θ= rvv  in the form (labels: λ of the hard layers – where to write them is not 
necessary – are missed): 
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and therefore: [1.] = 0 and  [2.] = 0 should be from which we get the first two 
basic equations written in potential functions. Introducing these functions also into 
the 3.-rd equations of section 3.3 finally we get the boundary value problem with 
these functions in form: 

3.5.1 Governing equations: 
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Advantage of these equations is the separation of them for ϕ,w  and ψ . 

3.5.2 Boundary conditions - simply supported edges: 
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Writing out these conditions (missing the label: λ) after some transformations we 
have: 
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4 Sample solution for regularly built plate  
For the control of basic equations derived above let us see the stability of a 
classical circular sandwich plate with equal thickness of isotropic hard layers 
(hα = h = const.) and transversally isotropic core-layer of thickness: s. The 
material characteristics are as usual, and given below in the formulas: 

4.1 Material parameters:  
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4.2 Instability conditions: 
In the given case atisymmetric and symmetric forms of instability can be separated 
by the following conditions and the corresponding equations are: 

4.2.1 Antisymmetric:  212121 ,, ψ−=ψϕ−=ϕ= ww  
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4.3 Solution at Antisymmetric conditions: 
Taking the solution functions in forms: 
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solution functions we found, that: 
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where I kr J krn n( ), ( )  are the Bessel functions of  1st and 2nd kind. 

4.3.1 Algorithm for the determination of the critical force: Nr
∗  

 Putting general solutions )w,,( 111 ψϕ into B.C. of section 3.5.2, we get a 
set of linear homogenous equations for the determination of constants kA : 

.0AS =⋅  Condition of nontrivial solution of this equation is: 0)]N(Sdet[ r = . 

Simultaneous solution of this equation with the characteristic one gives eigen-
values of the problem, minimum of which is the critical value of loading: *
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4.3.2 Numerical investigations  

On the basis of computer code, written for the given algorithm, the shortly shown 
results have been got. At control calculation (basically for one of hard layers) for 

 
Basic Data: 
Hard faces: 

E = 200000 [MPa],  
ν = 0.3,  ro = 0.5 [m],  

h =0.002 [m], 
Transversally soft core: 
G =  10 [MPa],  s = 0.01 

[m] 
 

(At control calculation: 
G=E/1E+10  G = 0) 

Min. root = Critical loading parameter these results gives: X1 = NDR = 2.048914, 
from which the critical value of radial UD force: min Nr = *

rN = 2.460394E-03 
[N/m], as in the literature. 

Conclusions  

Using tensor formalism the corresponding governing equations and natural 
boundary conditions are derived. As example for the stability of circular sandwich 
plate with isotropic hard layers the basic equations and - at Navier-type boundary 
conditions - method of analytical solution is given.   
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