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Abstract: In the framework of the operations with generators extensions are consid-
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1 Introduction

Based on the semiring structure, it is developed in [14, 16, 19, 20] the so called

idempotent analysis, and in a more general setting in [24, 25, 26, 29, 31, 33,

34] the so called pseudo-analysis in an analogous way as classical analysis,

introducing �-measure, pseudo-integral, pseudo-convolution, pseudo-Laplace

transform, etc. Pseudo-analysis was applied for the construction of solutions

of nonlinear PDEs using the pseudo-linear superposition principle ([2, 10, 11,

15, 16, 14, 19, 20, 26, 27, 28, 29, 31]).

Generally we can notice quite di�erent behavior between two classes of

pseudo-operations: one which is based on generated operations (g-case) and

other based on idempotent operations (sup and inf).

In the paper [38], we have considered extensions of operations � and � for

non-commutative and non-associative cases, which we call generalized pseudo-

addition and generalized pseudo-multiplication from the right. This research

was motivated by the application of the pseudo-superposition principle to non-

linear partial di�erential equations. Then we introduce the three parameters

pair of pseudo-operations [39] and we prove that it can be used in the pseudo-

linear superposition principle for the Burger's type equations, see [32].



2 Generalized pseudo-adition and pseudo

-multiplication

We present in this section results obtained in [38, 39] related to the relaxation

of properties of pseudo-addition and pseudo-multiplication and applications of

the obtained results to nonlinear PDEs.

De�nition 1 We call real operations � and � generalized pseudo-addition and

generalized pseudo-multiplication (from the right), respectively, if they satisfy

the following conditions:

(i) � and � are functions from C
2(R2 );

(ii) the equation t� t = z for a given z has a unique solution,

(iii) � is right distributive over � :

(Dr) (x� y)� z = (x� z)� (y � z):

Changing in the previous de�nition in (iii) that � is left distributive over � :

(Dl) z � (x� y) = (z � x)� (z � y);

we obtain generalized pseudo-addition and generalized pseudo-multiplication

(from the left), respectively. Since all considerations are analogous we shall

consider in the sequel only the case of generalized pseudo-addition and pseudo-

multiplication from the right.

We give a representation theorem for generalized pseudo-addition and gen-

eralized pseudo-multiplication. For this purpose �rst we shall prove several

lemmas. First of all for a function of two real variables u = u(x; y) we shall

use the following notation

(u)1 =
@u

@x
= ux; (u)2 =

@u

@y
= uy; (u)12 =

@
2
u

@x@y
= uxy:

The following representation theorem is obtained in [38].

Theorem 2 Two real operations � and � from C
2(R2 ) with (x � y)1 6=

0 for all x; y are generalized pseudo-addition and pseudo-multiplication (from

the right), respectively, if and only if they are representable by

u� z = h
�1(f(z)h(u) + �(z)); (1)

where f and � are some functions from C
2(R); and the function h is given by

h(u) =

Z u



�
e
�

1

a

R
s

�
(t�0

t)12 dt
�
ds;



the operation �0 is given by x�0
y = '

�1(x� y); where ' is de�ned by '(x) =

x� x; and for the operation � which satis�es the functional equation

(u� v)f(z) + �(z) = (uf(z) + �(z))� (vf(z) + �(z)):

we have

x� y = h
�1((h(x)� h(y)); (2)

Theorem 3 If � and � are generalized pseudo-addition and pseudo-multiplication

(from the right), respectively, and additionally that

(a) x� 0 = a (constant) for every x;

(b) there exists y0 such that (x� y0)1 6= 0;

then we have

x� y = h
�1(h(x) + h(y)); x� y = h

�1(f(y)h(x)); (3)

where (for ; � arbitrary non-zero constants)

h(x) = ( � �)2

Z
(x� �)1

(x� �)2
dx; (4)

and f is some function from C
2(R) so that f(0) = 0:

Remark 4 (i) Theorem 3 holds also for �;� 2 C1
; in this case f 2 C1

:

(ii) As a consequence of Theorem 3 we obtain that � is also commutative

and associative. In the special case for f = h we obtain the g-calculus.

De�nition 5 For given generalized pseudo-addition � and generalized pseudo-

multiplication � (from the right) we call any function h from Theorem 2 in (1)

and (2) and Theorem 3 in (3) and (4) a generator of operations � and �:

Now we can give a complete characterization of generalized pseudo-addition

and pseudo-multiplication

Theorem 6 Let � and � be a generalized pseudo-addition and a generalized

pseudo-multiplication, respectively, with (x� y)1 6= 0 for all x; y:

Then � and � can be represented by one of the following forms

(i) x� y = h
�1(h(y) +  (h(x)� h(y)));

x� y = h
�1(h(x) + �(y));

(ii) x� y = h
�1(h(y) +  (h(x) � h(y)));

x� y = h
�1(�(y)� h(x));

with some odd function  ;

(iii) x� y = h
�1(h(y) + a(h(x) � h(y)));

x� y = h
�1(h(x)f(y) + �(y));

where  (t) = t�0; a is a constant and �; �; f; h are the functions from Theorem

2.



3 Applications to nonlinear PDEs

Example 7 The following nonlinear PDE of the �rst order

c1(x; y)ux + c2(x; y)uy = F (u); (5)

where c1; c2 and F are given functions, was considered in [8] and it was shown

for it the nonlinear superposition principle in the sense of Ames and Jones [11].

We shall show that there are operations � and � from the family of op-

erations characterized by Theorem 6 such that there is ful�lled the nonlinear

superposition principle with respect to these operations. Taking

h(u) =

Z
dt

F (t)
;

we introduce using (i) from Theorem 6 generalized pseudo-addition � and

pseudo-multiplication � (from the left) for arbitrary " and for an arbitrary

function �; and  "(x) = G
�1("+G(x)) where some function G is in C1

; by

u� v = h
�1(h(v) +  "(h(u)� h(v)));

u� v = h
�1(h(v) + �(u));

respectively. Then using the consideration in [8] we easily obtain that if u1 and

u2 are solutions of equation (5) then also for every "

u1 � u2 = h
�1(h(u2) +  "(h(u1)� h(u2)))

is a solution of the equation (5).

For arbitrary but �xed real number a and a solution u of the equation (5)

we have that also for every function �

a� u = h
�1(h(u) + �(a))

is a solution of the equation (5). Namely, putting a� u in (5) we obtain

c1(x; y)(h
�1(h(u)+�(a)))x+c2(x; y)(h

�1(h(u)+�(a)))y =
1

h0(h�1(h(u) + �(a)))
;

where we have used that F (a� u) = 1=h0(a� u); and h0 is the derivative of h:

Hence

c1(x; y)h
0(u)ux

h0((h�1(h(u) + �(a))
+

c2(x; y)h
0(u)uy

h0((h�1(h(u) + �(a))
=

1

h0(h�1(h(u) + �(a)))
:

Since h0(u) 6= 0 reducing h0(h�1(h(u) + �(a))) and using that h0(u) = 1=F (u)

we obtain
c1(x; y)

F (u)
ux +

c2(x; y)

F (u)
uy = 1:



Summarizing, we have that if u1 and u2 are solutions of equation (5) and a1
and a2 arbitrary but �xed real numbers, then also for every " and every �

(a1 � u1)� (a2 � u2)

is a solution of the equation (5).

Taking specially c1(x; y) = c2(x; y) = 1 and F (u) = u
2 we obtain the

equation

ux + uy = u
2
:

Then we have h(u) = �1=u: In this case we have for the operations � and �

u� v =
1

1

v
�  

�
1

v
�

1

u

� ;

u� v =
1

1

u
� �(v)

;

where  (t) = � ln(et + 1); the same statement as for the general case.

We remark that it cannot occur the situation of Theorem 3, because condi-

tion (a) from Theorem 3 would imply that 0� u is a constant a, and therefore

(0�u)x = (0�u)y = 0; which can give only a trivial solution u = a if F (a) = 0:

We shall need the following special class of operations � and �:

Theorem 8 Let " be any positive real number. If k is a strictly monotone

positive function and belongs to C2
; then operations de�ned by

x� y = k
�1("k(x) + k(y)); x� y = k

�1(k(x)"k(y))

are generalized pseudo-addition and pseudo-multiplication (from the left), re-

spectively, which belong to the class (i) in Theorem 6 (using the operation �0

de�ned by x�0
y = y � x).

Remark 9 Specially for " = 1 we obtain a semiring which is based on a gen-

erator (g-calculus [26, 27]).

Example 10 The following PDE of the second order

nX
i=1

nX
j=1

aij(x1; : : : ; xn)uxixj +

nX
i=1

bk(x1; : : : ; xn)uxk + c(x1; : : : ; xn)u

=
�

u

nX
i=1

nX
j=1

aij(x1; : : : ; xn)uxiuxj ; (6)



where aij ; bk; c are given functions and � is a constant di�erent from 1; was

considered in [15].

We shall show that there are operations � and � from the family of op-

erations characterized by Theorem 8 such that there is ful�lled the nonlinear

superposition principle with respect to these operations. Taking k(x) = x
1��

for � 6= 1 and x > 0, we consider generalized pseudo-addition and pseudo-

multiplication (from the left) from Theorem 8

u� v = ("u1�� + v
1��)1=(1��)

;

u� v = u
"
v;

respectively.

If u1 and u2 are positive solutions of equation (6) then also for every " > 0

u1 � u2 = k
�1("k(u1) + k(u2)))

is a positive solution of the equation (6).

For arbitrary but �xed real number a > 0 and a positive solution u of the

equation (6) we have that

a� u = a
"
u

is a solution of the equation (6). Taking a� (u1 � u2) with a = j�0�2j
1=" and

" =
j�1j

j�2j
we obtain Levin's result [15].

We note that if u is a solution and a is an arbitrary positive real number

then u� a is a solution of the equation (6) if and only if " = 1; which gives us

the g-calculus.

4 Pseudo-operations with three parameters

In this section we introduce pseudo-operations de�ned with three parameters,

and obtain their representations, [39]. This will enable us to �nd other solutions

for the Burgers equations with comparison with the ones obtained in [38]. From

now on we shall consider the following sets:

K0 = fk strictly monotone positive function, belonging to C2(R)
�
C
2([0;1))

�
g;

K = fk strictly monotone positive function, belonging to C2(R)
�
C
2([0;1))

�
;

such that k(u) 6= 0;8ug:

Proposition 11 Let "1; "2 be two real positive numbers and k 2 K0: If the

operation � is de�ned by

u� v = k
�1("1k(u) + "2k(v)); (7)

then the equation t� t = z is solvable.



Now we consider another operation � de�ned for Æ > 0 in this way:

u� v = k
�1(k(u)Æk(v)): (8)

Theorem 12 Given three positive parameters "1; "2; and Æ; then the operations

de�ned by (7) and (8) for k 2 K, are generalized operations in the sense of the

De�nition 1 and they belong to the class (i) of the Theorem 6, i.e., they admit

the following representations:

u� v = h
�1 (h(v) + 	(h(v)� h(u))) ; (9)

u� v = h
�1(h(v) + �(u));

where h(x) = log(k(x));	(t) = log("1e
�t + "2); �(x) = Æ log k(u(x)):

Corollary 13 For every pair of operations de�ned by (7) and (8) for k 2 K

there exists "0 2 R and an operation �"00 for "00 > 0 given by

u�"00 v = k
�1("00k(u) + k(v));

such that 	(t) = "
0 +  ("00e�t + 1); where 	 is the function from (9) and  is

the corresponding function from Theorem 6 (i) for the operation �"00 :

In [38] it has been proven that if u and v are solutions of the Burger's

equation, then for " > 0 and a 2 R we have that u � v = k
�1("k(u) + k(v))

and a� v = k
�1(k(a)" + k(v)) are solutions of the Burgers equation, too.

We shall extend this result to more general partial di�erential equation. Let

us consider the Burger's type of nonlinear partial di�erential equation given by

the following equality

ut � �uxx = ��(u)u2
x
; (10)

where � is a given continuous function and � 2 R.

Theorem 14 For equation (10), where � is a continuous function and � 2 R,

there exist three parameters pseudo-operations � and � given by (7) and (8),

respectively, with a generating function

k(x) = �

Z
exp

�Z
�(x) dx

�
dx;

where the positive sign is taken when
R
exp

�R
�(x) dx

�
dx is greater then zero

and the negative sign is taken when
R
exp(

R
�(x) dx) dx is less then zero,

such that the pseudo-linear combination of solutions of equation (10) is also a

solution of the equation (10).

Remark 15 A continuous function � can always be represented by some

strictly monotone function k as � =
k
00

k0
.



Further on, for an arbitrary but �xed � 2 R; we introduce the �-corresponding

equation for the equation (10) by

ut � �uxx = ���(u)u
2
x;

where �� =
(k�)00

(k�)0
and k is a generating function from Theorem 14.

Theorem 16 Let ut��uxx = ���(u)u
2
x be the �-corresponding equation for

the equation (10). Then, every pseudo-linear combination of solutions of the

�-corresponding equation with respect to pseudo-operations �� and �� given

by generating function k� is also a solution of the �-corresponding equation.

Theorem 17 For the Hamilton-Jacobi equation

ut �
k
0(u)

k(u)
u
2
x
= 0;

where k is a generating function from Theorem 14, pseudo-linear combination

of solutions such that � = min for k being strictly decreasing function, � = max

for k being strictly increasing function and x� y = k
�1(kÆ(x)k(y)), is also its

solution.

Remark 18 Using the approach from [19] we have shown in [21] that in spite

of the di�erent behavior we can obtain the idempotent operations as a limit case

of a family of generated operations. sup- and inf-measures can be obtained as

limits of families of pseudo-additive measures with respect to generated pseudo-

additions. The corresponding integrals with respect to sup- or inf-measures can

be obtained as limits of families of g-integrals [21]. We remark that such limit

procedures were used in [19] to obtain solutions of nonlinear partial di�erential

equations.

Basing on the operations with generators, a theory was developed of gen-

eralized functions [37] in analogy to the Mikusi�nski's approach [22, 23]. This

enables to obtain generalized solutions of the Burgers equation which are ex-

tensions of the previously obtained solutions [19, 27, 29, 33].

5 Conclusions

There are wide classes of PDEs for which the pseudo-linear superposition prin-

ciple were proven. The general problem of the wider applications of the pseudo-

analysis on nonlinear PDEs is how to determine that a PDE satisfy a super-

position principle for suitable operations � and �: In this direction Goard and

Broadbridge [8] have obtained a close connection of the nonlinear superposition

principle and Lie symmetry algebras [4]. Since there are number of computer

added algorithms for �nding Lie symmetry algebra [41], this connection with

Lie symmetry algebras have to be further developed to obtain algorithms for

�nding operations � and � for wide classes of PDEs.
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