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Abstract: The purpose of this study is to describe the necessary conditions for the 
motion controller of a humanoid robot to perform the vertical jump. We 
performed vertical jump simulations using three different control algorithms and 
showed the effects of each algorithm on the vertical jump performance. We 
showed that motion controllers which consider one of two conditions separately 
are not appropriate to control the vertical jump. We demonstrated that the motion 
controller has to satisfy both conditions simultaneously in order to achieve a 
desired vertical jump. 
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I INTRODUCTION 

The vertical jump is an example of a 
fast explosive movement that requires 
quick and completely harmonized 
coordination of all segments of the 
robot, for the push-off, for the flight 
and, finally, for the landing. The most 
important part of the vertical jump 
which influences the efficiency and 
therefore the height of the jump is the 
push-off phase. The push-off phase 
can be defined as a time interval when 
the feet are touching the ground before 
the flight. The primary task of the 
actuators during the push-off phase is 
to keep the robot balanced during the 
entire jump. The secondary task of the 
actuators is to accelerate the robot’s 
center of mass upwards in the vertical 
direction to the extended body 
position. 
In the past, several research groups 
developed and studied jumping robots 
but most of these were simple 

mechanisms not similar to humans. 
They were controlled by empirically 
derived control strategies. Probably the 
best-known hopping robots were 
designed by Raibert and his team [2]. 
They developed different hopping 
robots, all with telescopic legs and 
with a steady-state control algorithm. 
Later, De Man et al. developed a 
trajectory generation strategy based on 
the angular momentum theorem which 
was implemented on a model with 
articulated legs [1]. Recently Hyon et 
al. developed a one-legged hopping 
robot with a structure based on the 
hind-limb model of a dog [4]. They 
used an empirically derived controller 
based on the characteristic dynamics. 
The purpose of this study is to 
mathematically formulate the 
necessary conditions that the motion 
controller of a humanoid robot has to 
consider in order to perform the 
vertical jump. 



II DYNAMICAL MODEL OF 
JUMPING ROBOT 

The model of the jumping robot is 
planar and is composed of four 
segments which represent the foot, 
shank, thigh and trunk. The segments 
are connected by frictionless rotational 
hinges whose axes are perpendicular to 
the sagital plane. The model consists 
of two parts, the model of the robot in 
the air and the model of the robot in 
contact with the ground. While the tip 
of the foot is on the ground, the 
contact between the foot tip and the 
ground is modeled as a rotational 
hinge joint between the foot tip and the 
ground at point F. Therefore, the robot 
has six degrees of freedom during 
flight and four degrees of freedom 
during stance (with the assumption 
that the foot tip of the robot does not 
slip and does not bounce back). The 
generalized coordinates used to 
describe the motion of the robot are 
coordinates Fx  and Fy  of the foot tip 
measured in the reference frame and 
joint angles α , β , γ , δ . 

III VERTICAL JUMP 
CONDITIONS AND CONTROL 

ALGORITHM 

To assure the verticality of the jump, 
the robot’s center of mass (COM) has 
to move in the upward direction above 
the support polygon during the push-
off phase of the jump. The second 
condition, which refers to the balance 
of the robot during the push-off phase, 
is the position of the zero moment 
point (ZMP). ZMP is the point on the 
ground at which the net moment of the 
inertial forces and the gravity forces 
has no component along the horizontal 
axes [3]. In the following sections we 
will analyze how these two conditions 

influence the vertical jump. First we 
will design two control algorithms 
based on the COM condition and ZMP 
condition separately and then we will 
design a control algorithm that 
considers both conditions together. 
Equations that define the position of 
COM are 
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where comx  and comy  are horizontal 
and vertical positions of COM of the 
whole system, respectively. ix  and iy  
are the coordinates of COM of the i-th 
segment, mi is the mass of the i-th 
segment and n is the number of 
segments. 
The position of ZMP is 
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g is the quadratic norm of the gravity 
vector, Ii is the inertial tensor of the i-
th segment around its COM and iω  is 
the angular velocity of the i-th 
segment. When the robot is at rest, the 
position of ZMP coincides with the 
horizontal position of COM. 
For the control purposes we have to 
find the second derivatives of comx  and 

comy  (Eq. 1). We get the following 
equations 

11 12 13 14 1com k k k k dx α β γ δ= + + + +&& &&&& &&&&  (4) 
and 

21 22 23 24 2com k k k k dy α β γ δ= + + + + ,&& &&&& &&&&  (5) 
where the parameters kij and di are 
functions of joint angles 
( ( ), ( )ij ik f d fα β γ δ α β γ δ= , , , = , , , ). 
The position of ZMP on the ground 
can not be described in this form 



because the denominator of Eq. 2 is 
also a function of joint angles. 
However, in many cases we can freely 
move the coordinate system to 
coincide with the position of the 
desired ZMP and the balancing 
condition becomes 0zmpx = . In this 
case we can express zmpx  as 

31 32 33 34 30zmpx k k k k dα β γ δ= = + + + + .&& &&&& &&  (6) 
Eqs. 4, 5 and 6 can be combined and 
written in the matrix form 
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where comx&&  and zmpx  are the 
conditions that relate with the balance. 
On the other hand, comy&&  is the 
prescribed vertical acceleration of the 
robot’s COM during the push-off 
phase of the jump which enables the 
robot to jump. 

Control of comx  

In the first case we analyse the vertical 
jump when the motion controller keeps 
the horizontal position of the robot’s 
COM over the virtual joint connecting 
the foot with the ground at point F 
during the entire push-off phase of the 
vertical jump. Motion controller does 
not control the position of ZMP zmpx . 
By rewriting Eq. 7 for comx  and comy  
we get 
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Since the system is under-determinate 
(the degree of redundancy is two), we 
have to set up two additional 
constraints. To achieve a human like 
motion of the vertical jump we chose 

the following simple constraints 
1 2c cγ β δ β= , = ,&& && &&&&  (9) 

where 1c  and 2c  are constants. By 
substitution of Eq. 9 into Eq. 8 we get 
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The system of equations is determinate 
and the joint accelerations can be 
written as 
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Control of zmpx  

In the second case we analyse the 
vertical jump when the motion 
controller keeps the position of ZMP 
aligned with the virtual joint at point F. 
The motion controller does not control 
the horizontal position of COM ( comx ). 
By rewriting Eq. 7 for zmpx  and comy  
we get 
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Similarly as in the previous case we 
have to find the joint accelerations. If 
we again use the same constraints (9) 
we get the following determinate 
system of equations 
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and the joint accelerations are 
1
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Control of comx  and zmpx  

In the third case we will analyse the 
vertical jump when the motion 
controller considers both conditions 



from the precedent two sections. It 
keeps the position of ZMP and the 
horizontal position of the robot’s COM 
aligned with the virtual joint at point F. 
In this case the degree of redundancy 
is one. The following constraint that 
abolishes the redundancy of Eq. 7 is 
the relationship of the ankle and knee 
joint accelerations 

1Cγ β= &&&&  (15) 
where 1C  is a constant. By substitution 
of Eq. 15 into Eq. 7 we get 
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and the joint accelerations are 
1

11 112 1 13 14

21 22 1 23 24 2

31 32 1 33 34 30

com

com

k k C k k dx
k k C k k dy
k k C k k d

α
β
δ

− ⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

+⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + − .⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

&& &&
&& &&
&&

 (17) 

Motion Controller 

For the control of the robot we used a 
simple feed forward joint acceleration 
controller 

( ) ( ) ( )c cq q q g qqτ = + , + ,H C &&&  (18) 
where cτ  and q  denote the control 
torque and the vector of joint 
positions, respectively. H , C  and g  
denote the inertia matrix, the vector of 
Coriolis and centrifugal forces and the 
vector of gravity forces, respectively. 

cq&&  is the vector of control 

accelerations (
T

cq α β γ δ⎡ ⎤= , , ,⎣ ⎦
&& &&&& &&&& ). 

During the push-off phase of the jump 
cq&&  is defined by Eqs. (11), (14) or 

(17). During the flight phase, when the 
robot is in the air, the angular 
momentum and the linear momentum 
are conserved and the cq&&  is set in such 
a way that the joint motions stops and 
the robot is prepared for landing. 

IV SIMULATION STUDY 

We performed vertical jump 
simulations using three different 
control algorithms described in the 
previous section. First we simulated 
the vertical jump using the control 
algorithm based on the COM 
condition, then we simulated the 
vertical jump using the control 
algorithm based on the ZMP condition 
and, finally, we simulated the jump 
where the controller considered both 
conditions together. 

Control of comx  

In this case we controlled comy&&  and 
comx&&  as defined by Eq. 11. From the 

requirement that comx&&  has to be above 
the support polygon (point F) follows 
that 0comx =  and 0comx =&& . Fig. 1 
shows the position of COM during the 
jump. The solid line represents the 
horizontal position while the dashed 
line represents the vertical position of 
COM. Dotted line shows the moment 
of take-off. It is evident that the 
horizontal position of COM remains 
zero, i.e. COM is above point F. 
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Figure 1 

Position of center of mass during vertical jump 
considering only COM condition 

Due to the fact that we did not control 
the position of ZMP, the required 
torque in the virtual joint between the 
foot and the ground during the push-



off phase of the jump is not zero (see 
Fig. 2). As this torque can not be 
applied to the real robotic system, this 
controller is not appropriate for 
performing the vertical jump. Without 
applying this torque at the virtual joint 
the robot becomes unbalanced. 
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Figure 2 

Required torque in virtual joint considering only 
COM condition 

Control of zmpx  

In this case we controlled comy&&  and 

zmpx , as defined by Eq. 14. To satisfy 
the balance criteria zmpx  has to be over 
the support polygon ( 0zmpx = ). As 
evident from Fig. 3, the horizontal 
position of COM during the push-off 
phase of the jump is not zero and, 
therefore, the robot does not perform 
the vertical jump as it should. 

0 0.2 0.4 0.6

0

0.2

0.4

0.6

0.8

1

t/s 

x C
O

M
,y

C
O

M
/m

 
Figure 3 

Position of center of mass during vertical jump 
considering only ZMP condition 

On the other hand, the torque in the 

virtual joint is zero (Fig. 4) and the 
system is balanced without the torque 
in the virtual joint between the foot 
and the ground. Therefore, the robot 
performs a jump, but this is not a 
vertical jump, since COM is not above 
point F at the take-off moment. 
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Figure 4 

Required torque in virtual joint considering only 
ZMP condition 

Control of comx  and zmpx  

In this case we controlled comy&&  
together with both comx&&  and zmpx , as 
defined by Eq. 17. Fig. 5 shows the 
position of COM during the jump and 
Fig. 6 shows the torque in the virtual 
joint. 
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Figure 5 

Position of center of mass during vertical jump 
considering both COM and ZMP conditions 

As the position of COM is always 
above point F and the torque in the 
virtual joint is zero, the robot performs 
the desired vertical jump. Therefore, 
both conditions have to be fulfilled to 



assure the verticality of the jump. 
Both, the horizontal position of COM 
and the position of ZMP have to 
coincide with point F. 
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Figure 6 

Torque in virtual joint considering both COM 
and ZMP 

Conclusions 

In this study, we mathematically 
formulated the necessary conditions 
which have to be considered by the 
motion controller to perform the 
vertical jump. The first condition 
refers to the robot’s center of gravity 
which has to move in the upward 
direction above the support polygon 
during the push-off phase of the jump. 
The second condition refers to the 
position of the zero moment point that 
has to lie inside the support polygon to 
assure the balance of the robot. We 
analyzed how these two conditions 
influence the vertical jump 
performance. Based on these 
conditions we designed three different 
control algorithms and used them in 
vertical jump simulations. We showed 
that motion controllers that consider 
one of two conditions separately are 
not appropriate for the control of the 
vertical jump. We demonstrated that 
the motion controller has to satisfy 
both conditions simultaneously in 
order to achieve a desired vertical 
jump. 
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