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Abstract: In this paper it is considered a special oriented control method which 
can be used for control of systems described by Lagrange’s equations in the form 
useful especially for control of mechanical systems. This method can be ranked 
among Lyapunov based methods. There is proved a theorem shoving that the 
control process is exponentially stable. The control schemes can be applied 
generally to mechatronical systems, especially for robots. 
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I INTRODUCTION 

The motion of a mechanical system is 
able to describe by Lagrange’s 
equations 
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for j=1,…,n; where jQ are the non-
conservative generalised forces, the 
Lagrangian is defined as L=K-V, 
where V represents the potential 
energy and K is the kinetic one. The 
kinetic energy can be written in the 
quadratic form 

qqHqK T && )(
2
1

= . (2) 

The matrix H(q) is the inertial matrix 
including inertial terms of inertial load 
distributions of actuators and u  is the 
vector of input torques generated at 
joint actuators. Our problem is to 
define any controller if possible in any 
simple form that will be exponential 
stable [1] and then to set all definable 
parameters. All computations can be 
simulated on PC. 

II DESCRIPTION OF SYSTEM 

The equation of motion for a studied 
system is possible to rewrite from (1) 
into the set of differential equations in 
a vector form 

( ) uqgqqqCqqH =++ &&&& ),()( , (3) 
where 
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is a matrix, T
nqqq ),...,( 1=  is a vector 

of generalised co-ordinates that is 
complete and independent, for this  
purpose it is usually used a matrix 
method; further let be denoted 
( ) T

nqVqVqg )/,...,/( 1 ∂∂∂∂= , 
V is a generalised potential function, 
H(q) is a symmetric matrix (positive 
definite and continuous), N  is a skew 
symmetric matrix in a form 
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Furthermore, the form 
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is quadratic in q& . 
It can be proved that this form has 
every cinematic chain, for example 
industrial robots, cranes, excavators 
and so on. It will be suitable to have 
some inequalities for the other work. 
But we will not use all of them. 
A) It is known that for every constant 
symmetric positive definite matrix Λ  
and every vector x is 
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where )(minmin Λ= λλ is the smallest 
( )(maxmax Λ= λλ … biggest) 

eigenvalue of matrix Λ . 
B) Matrix )(qHH = is continuous 
and the working space is compact, 
therefore there are constant n x n 
matrices K1, K2 so that the inequalities 

( ) 21 KqHK ≤≤  hold. But even 
without compactness matrix )(qH is 
positive definite and symmetric 
therefore there is strictly positive 
minimum mλ  (and maximum Mλ ) 
eigenvalue of H(q) for all 
configurations q and for every x so 
that xxxqHxxx T

M
TT

m λλ ≤≤ )( . 

C) Matrix N  is skew-symmetric and 
so xTN(q)x = 0 for every q  and x. 
D) The function V  is bounded and 

gKqg ≤)( for some positive 
constant Kg >0. 
E) qKqqC && ≤),(  for some 

constant 0>K . 
     Now we suppose a target position 

Fq and a velocity Fq& are given and 

consider a set-point problem where 
any initial state ( ) ( )( )0,0 qq &  is allowed 
to approach asymptotically to the 
defined target, or final, state 
( ) ( )FF qqqq && ,, = . Remember, here the 
state is represented by ordered pairs 
( )qq &, … position and velocity. 

III ALGORITHM OF CONTROL 

Let Fqqq −=Δ be a difference and 
define vectors zy, : 

qAqy F Δ−= &&  and yqz && −=  (6) 
where A is constant and positive 
definite matrix. Consider the control 
law in the following form (compare 
with (3)): 

BzqgyqqCyqHu −++= )(),()( &&&&  (7) 
for control system (3), the matrix B is 
positive definite too. If we substitute 
(7) into (3), then with using (6) is 

0),()( =++ BzzqqCzqH && , (8) 
which describes a first-order 
differential equation in the new 
variable z. This variable z is related to 
the tracking error as above. From (6) 
we have 

qAzq Δ−=Δ &  (9) 
Theorem: 
The control law (7) has the following 
properties: 
(a) ∞∩∈ LLz 2  and 
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( )

))0(

)0((exp)( 2

q

qbtktq

&Δ+

Δ−≤Δ
 

(c) ∞∩∈Δ LLq 2&  and 
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where cbakkk ,,,,, 321 are positive 

constants. (See 2L  and ∞L to [2].) 
Proof: 
Ad (a) Let the following positive 
definite function be defined 
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then its derivative with respect the 
time t  is  

0≤−= BzzV T& . (11) 
The function V is decreasing and 
positive, therefore 
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From property A) as above we obtain 
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and so 
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We see that 2Lz∈ . The function V 
is bounded, therefore Z is bounded too 
and hence ∞∈Lz . 
Now prove inequality of (a) 
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 (14) 
and so integration of (14) yields 
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and then we obtain the following 
inequality for V: 

)2exp()0()( atVtV −≤ . (16) 

From properties B), (14) and (16) we 
obtain the inequalities 
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and therefore we derive 
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We see that the inequality of (a) is true 
for some constant 1k . 
Ad (b) We will prove the inequality of 
(b), because the other‘s follow from 
this inequality.  The solution of (9) is 
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and from this for any suitable 
constants we can derive 
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where al ≠  and if we use (a) which 
was proved then 
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Define { }alb ,min= . From (9) it 
follows 
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and if we substitute this one into (19) 
we obtain 
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 (20) 
for constants defined by the following 
equalities 

alnkAn −+= 211 2α , 

alnk −= 212β , 

{ }βα ,max2 =k . 
From the last inequality it is now very 
easy to obtain the inequality (b). The 
other parts of (b) can be easy proved 
from this inequality. 
(c) This proof is easy to make with 
using (9), (a) and (b), hence we will 
leave it to reader. The theorem is now 
proved. 

Conclusion 

This methods was used for control of 
laboratory go-car, for control of 
mechanical system obtained by 
reconstruction of an old plotter and for 
control of robot arms. The experiences 
are very good.  Along a transformation 
of (3) to the state stable follows from 
the general theory of control that a 
pertinent Jacoby matrix is stable. 
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