
A Genetic Algorithm for the Two-dimensional
Single Large Object Placement Problem

László Pál
Sapientia University, Department of Mathematics and Informatics
Libertatii 1, RO-530104 Miercurea-Ciuc, Romania
E-mail: pallaszlo@sapientia.siculorum.ro

Abstract: The two-dimensional Single Large Object Placement Problem (SLOPP) problem
consists of determining a cutting pattern of a set of n small rectangular piece types (little
object) on a rectangular stock plate (large object) of length L and width W, as to maximize
the sum of the profits of the pieces to be cut. Each piece type i, i = 1, . . ., m, is
characterized by a length li, a width wi, a profit (or weight) ci and an upper demand value
bi. Only guillotine cuts are allowed and the pieces may be rotated by 90°. In this paper
three heuristic algorithm were applied to constrained two-dimensional cutting problems
and the results were compared.

Keywords: cutting and packing, genetic algorithm

1 Introduction

Cutting and packing problems are a special case of combinatorial optimization
problems [7]. They are encountered in numerous realworld applications such as
computer science, industrial engineering, logistics, manufacturing, etc.

According to the new improved topology of Cutting and Packing problems [17],
our problem falls into the two-dimensional, rectangular SLOPP (Single Large
Object Placement Problem) category.

The two-dimensional, rectangular SLOPP defines a problem category in which a
weakly heterogeneous assortment of small items has to be assigned to a given,
limited set of large objects. The set of large objects is not sufficient to
accommodate all the small items. The value or the total size of the accommodated
small objects has to be maximised, or, alternatively, the corresponding waste has
to be minimised. In this paper only guillotine cuts are allowed. An instance of the
two-dimensional, rectangular and guillotine SLOPP problem consists of a large
stock rectangle of given dimensions L X W and m types of smaller rectangles
(pieces) where the ith type has dimensions li × wi. Furthermore, each type i, i=

1,…,m, is associated with a profit ci and an upper bound bi. The problem is now to
cut off from the large rectangle a set of small rectangles such that:

a) All pieces have fixed orientation, i.e. a piece of length l and width w is
different from a piece of length w and width l (when l≠ w).

b) All applied cuts are of guillotine type, i.e. they must run from end to end
on the rectangle being cut.

c) There are at most bi rectangles of type i (the demand constraint of the ith
piece) in the (feasible) cutting pattern.

d) The overall profit obtained
1

m
i ii

c x
=∑ where xi denotes the number of

rectangles of type i in the cutting pattern, is maximized.

In this paper we consider the unweighted version of the two-dimensional,
rectangular SLOPP in which the profit ci of the ith piece is exactly its area and the
pieces may be rotated by 90°. We wish to find a cutting pattern that minimizes the
unused area (trim loss).

Many authors have considered guillotine cutting problems. The unconstrained
guillotine SLOPP problem has been solved optimally by dynamic programming
[8, 9]. For the constrained guillotine SLOPP problem, Christofides and Whitlock
[4] have developed a tree search procedure based upon a depth-first search
method, and Viswanathan and Bagchi [18] have also used a branch and bound
method based upon a best-first search method for solving exactly the problem.
Hifi [10] improved Viswanathan and Bagchi’s [18] exact algorithm for the
constrained guillotine two-dimensional cutting problem. Hifi [12] give several
approximate algorithms for the constrained two-dimensional cutting problem
based upon a strip generation procedure.

This paper is organised as follows: In Section 2 we present two decoding
heuristics while in Section 3 we describe the genetic algorithm and its attributes.
In Section 4 we present the experimental results according to the decoding
heuristics.

2 Decoding Heuristics

A packing pattern may be represented by a permutation, which corresponds to the
sequence in which the small rectangles are packed. Other representations may be
found in [2, 6]. In this paper we concentrate on the permutation representation.
Now if we have a permutation, we know the order of packing the small pieces, but
we may still consider different strategies for packing the pieces. I have developed

a placement strategy using the Wang’s idea [16] denoted by WDH. This process is
also called decoding, and the pattern thus formed is also called a phenotype.

2.1 The WDH Placement Algorithm

The heuristic it is based on the observation that all guillotine cutting patterns can
be obtained by means of horizontal and vertical builds (Fig. 1). Waste arises if
there is a mismatch in the relevant dimension of the rectangles being combined.
Demanded rectangles and rectangles resulting from horizontal and vertical builds
are called guillotine rectangles. The area wasted inside a guillotine rectangle R is
its internal waste. The total waste of R is the waste which will result if R is
“placed” in the stock rectangle (Fig. 2).

Figure 1

Horizontal (a) and vertical (b) builds

Figure 2

Internal (a) and total (b) waste

To reducing the internal waste we have developed two variants of the placement
heuristic: WDH1 and WDH2. The main idea is common in both of the algorithms;
only the internal waste filling procedure is different.

The main idea: in every step we create a guillotine rectangle and try to fill the gap
to reducing the internal waste. This placement technique is summarized in the
following steps:

Ri, i=1..n modules (rectangles) to be placed

Pi, i=1..2 the top-left and bottom-right corners of the guillotine rectangle

1

m

i
i

n b
=

=∑

newOBJ – represents the aria of the new guillotine rectangle

1. Place module 1 at the bottom-left corner of the sheet

2. Set the guillotine rectangle module 1

3. Set Pi, i=1..2

4. For i=1 to n

 Set OBJ to a big value

 For j=1 to 2

 Place the bottom-left corner of Ri on Pj

 Check boundary conditions

 IF conditions satisfied THEN Calculate the newOBJ

IF newOBJ is less than OBJ THEN

OBJ = newOBJ

Save placement of module Ri

 EndIf

 EndFor

 Set the new guillotine rectangle

 Set the new Pi of guillotine rectangle

 If there is gap then we fill it using a Greedy algorithm

EndFor

In the next steps we describe the two “gap-fill” algorithms. We consider the gap as
a strip. In the first case the reminded rectangles are sorted into height or width
order. The gap will be filled horizontally or vertically by iterating over the sorted

rectangles (Fig. 3). In the second case the gap will be filled by iterating simply
over the reminded rectangles (Fig. 4).

Figure 3
WDH1 heuristic

Figure 4
WDH2 heuristic

2.2 Improved First Fit Heuristic

The FF heuristic is a well-known algorithm and was considered by many
researchers [3, 15]. In this case the rectangles are first sorted into height order,
with the orientation being chosen so as to maximise height. The first rectangle is
placed in the upper left corner of the sheet. Subsequent rectangles are placed to the
right of this until there is insufficient space to add another. The first row is now
complete, with a height equal to that of the first rectangle. This process is repeated
until no more rows can fit on the sheet (see Fig. 5).

We improve the First Fit heuristic by fitting multiple rectangles into the same
column. Only rectangles of the same width (or less) can be placed in the same
column. When we have completed a row, we do not immediately proceed to the
next. Instead, we iterate over all remaining unplaced rectangles, looking for any
which have the same or less width as one of the columns, and are sufficiently
small to be placed in the same column without increasing the height of the row
(see Fig. 6).

Figure 5
FF heuristic

Figure 6
IFF heuristic

3 Genetic Algorithm

A genetic search algorithm is a heuristic search process that resembles natural
selection. There are many variations and refinements, but any genetic algorithm
has the features of reproduction, crossover and mutation. Initially a population is
selected, and by means of crossovers among members of the population or
mutation of members, the better of the population will remain.

3.1 Representation and Decoding

We use a permutation π representation for the chromosome:

)(),...,2(),1(nππππ = ([13])

Here)(iπ , 1, 2, ..., ni = denotes the index of the rectangles and
1

m
ii

n b
=

=∑ .

In the chromosome we also include an additional entry for the rotated version of
each rectangle. We suggest that)(iπ has a sign to indicate how the rectangle

)(iπ is packed [14]. The positive denotes that the rectangle is packed by the long
edge parallel to the x axes. The negative denotes that the rectangle is packed by
the short edge parallel to the x-axes, i.e. the rectangle is rotated by 90°. The
advantage of this data structure is it is easy to create new permutations by
changing the sequence which is done by the crossover and mutation operators of
GAs.

For decoding this genotype we use the WDH and IFF heuristics described above.
Instead of sorting rectangles by height order, we sort them in order according to
the chromosome. Thus the chromosome is a queue of rectangles to be placed by
the heuristic.

3.2 Recombination and Mutation

The crossover operator creates one or more offspring solutions by combining two
parents. For each pair of strings (parents), two cut points are generated randomly
along the positions of the strings. The elements lying between these two cut points
of the first string are taken out. The vacant positions are filled with respect to the
same order by elements, which also appear between the cut points on the first
string. This gives the first child. Now certain elements of the second string are
removed. They are replaced by elements of the first string between the cut points,
with respect also to the same order of appearance.

The mutation operator used in this paper consists of two parts. One part exchanges
two random elements or blocks of the every new permutation at a small mutation

rate. Another part reverses the sign of every element of the new permutations, i.e.
rotates every rectangle by 90°, with a low probability.

One additional crossover operator was specifically designed for the permutation
representation. In the crossover operator two crossover points are randomly
chosen. The crossover region defined by the two crossover points is transmitted
directly from the first parent to the offspring. All remaining positions are filled
with the remaining elements of the first parent in the order given by the second
parent.

3.3 Objective Function

In this paper I consider only one objective which is the wastage minimization. Our
objective function is given by the total area of all little objects divided by the large
object area:

1

n

j j
j

l w
Fitness

LW
==
∑

where

– n is the number of the piece cut

– j jl w is the area of piece j

– LW is the total area of the sheet

4 Experimental Results

I conducted my study on 15 small instances extracted from [11]. The number of
little objects (rectangles) in every instance ranges from 20 to 60. These benchmark
problems, from the literature, can be downloaded from http://www.laria.u-
picardie.fr/hifi/OR-Benchmark/2Dcutting/2Dcutting.html.

My objective was to compare the performance of the three algorithm according to
the wastage minimization. In this paper I didn’t consider the run time studying. I
coded the the heuristic methods in Java and ran them on a PC (Pentium IV, 500
MB RAM. For each test problem, all the heuristics were run 15 times and I took
averages of the result. The quality of a solution is measured by the trim-loss
percentage (wastage percentage).

There is no clear evidence that larger populations will produce better offspring. I
tried populations of sizes from 20 to 70, and I found that the best results occurred
when the sizes of the populations are about 50. Each run was terminated after the
100 iterations, when the trim loss remained stable. For every decoding methods I
used the two crossover operator and the two mutation operator. In terms of choices
of mutation rates I found that lower mutation rates usually work better. In both of
the them the mutation operator were 10%.

The results for the instances from [11] are presented in Table 1. It provides more
detailed results on each of the 15 instances for WDH1, WDH2 and IFF. The Wavg
(average waste percent) column list average solution values over 15 runs per
instance, Wmin (average minimum waste) and Wmax (average maximum waste)
show solution values of the best respectively the worst run. The second column
from Table 1 list the different demanded rectangles (m) while the third column list
the total number of the demanded rectangles (n).

Table 1
Detailed results of selected algorithms

GA+WDH1 GA+WDH2 GA+IFF

Nr. Inst. m n Wavg Wmin Wmax Wavg Wmin Wmax Wavg Wmin Wmax

1 2s 10 23 0,030 0,040 0,018 0,032 0,050 0,015 0,031 0,062 0,017

2 3s 20 62 0,020 0,028 0,016 0,022 0,037 0,010 0,033 0,053 0,021

3 A1s 20 62 0,014 0,028 0,005 0,016 0,030 0,005 0,015 0,024 0,005

4 A2s 20 53 0,027 0,034 0,006 0,028 0,033 0,006 0,030 0,061 0,006

5 A3 20 46 0,030 0,046 0,015 0,032 0,048 0,013 0,031 0,057 0,018

6 A4 20 35 0,030 0,052 0,022 0,052 0,069 0,029 0,043 0,034 0,032

7 A5 20 45 0,030 0,060 0,016 0,035 0,058 0,016 0,045 0,087 0,016

8 CHL1s 30 63 0,018 0,030 0,003 0,030 0,056 0,006 0,029 0,043 0,009

9 CHL2s 10 19 0,032 0,062 0,028 0,035 0,048 0,028 0,048 0,066 0,039

10 CHL6 30 65 0,019 0,041 0,005 0,021 0,051 0,008 0,019 0,039 0,004

11 Hchl3s 10 51 0,036 0,052 0,019 0,040 0,056 0,023 0,036 0,049 0,026

12 Hchl4s 10 32 0,040 0,057 0,021 0,049 0,072 0,020 0,062 0,093 0,036

13 Hchl6s 22 60 0,042 0,056 0,019 0,060 0,099 0,041 0,058 0,071 0,048

14 OF1 10 23 0,040 0,053 0,044 0,053 0,077 0,045 0,043 0,051 0,031

15 OF2 10 24 0,045 0,076 0,026 0,052 0,066 0,026 0,076 0,086 0,055

These results show that with WDH2 and IFF methods we can achieve similar
results. It can be observed that average solution qualities do in general not differ
very much. On the other hand it is clear that the WDH1 method produced better
results than the WDH and IFF heuristics. In Fig. 7, the mean trim losses of the
population in a particular run are plotted against iteration number.

0,000

0,020

0,040

0,060

0,080

0,100

0,120

0 20 40 60 80 100 120

Iteration

(M
ea

n)
 T

rim
 L

os
se

s
%

WDH1

WDH2

IFF

Figure 7

Mean trim losses in a population versus iteration numbers for instance 11

Generally I found that the use of these heuristics produce reasonable results for
this problem class. Of all the test problems the trim loss goes from 0% to 5%
which are within acceptable standards.

An example for cutting patterns obtained by WDH1, WDH2 and IFF for instance
11 is shown in Fig. 8.

Figure 8

Cutting patterns for instance number 11 obtained by WDH1, WDH2 and IFF heuristics

Conclusions

I considered different heuristic algorithms for two-dimensional, rectangular and
guillotine SLOPP problem. I compared the WDH1, WDH2 and IFF methods and
found that with WDH2 and IFF we can get similar results while the WDH1
outperforms them according to the wastage minimization.

In further works I will use different chromosome representation to extend these
heuristic algorithms for larger instances.

References

[1] J. E. Beasley: Algorithms for unconstrained two-dimensional guillotine
cutting. Journal of the Operational Research Society, 1985, 36, 297-306

[2] J. E. Beasley: An exact two-dimensional nonguillotine cutting tree search
procedure, Operations Research 33/1 (1985) 49-64

[3] J. O. Berkey, P. Y. Wang: Two-dimensional finite bin packing algorithms.
Journal of the Operational Research Society, 38:423-429, 1987

[4] N. Christofides, C. Whitlock: An algorithm for two-dimensional cutting
problems, Operations Research 25 (1977) 3 1-44

[5] K. A. Dowsland, W. Dowsland: Packing problems, European Journal of
Operational Research 56 (1992) 2-14

[6] K. A. Dowsland: Genetic algorithms – a tool for OR, Journal of the
Operational Research Society 47 (1996) 550-561

[7] H. Dyckhoff, A typology of cutting and packing problems, European
Journal of Operational Research 44 (1990) 145-159

[8] P. C. Gilmore, R. E. Gomory, Multistage cutting problems of two and more
dimensions, Operations Research 13 (1965) 94-119

[9] P. C. Gilmore, R. E. Gomory, The theory and computation of knapsack
functions, Operations Research 14 (1966) 1045-1074

[10] M. Hifi.: An improvement of Viswanathan and Bagchi’s exact algorithm
for constrained two-dimensional cutting stock, Computers and Operations
Research 24 (1997) 727-736

[11] M. Hifi., C. Roucairol: Approximate and exact algorithms for constrained
(un)weighted two-dimensional two-staged cutting stock problems, Journal
of Combinatorial Optimization 5 (2001) 465-494

[12] M. Hifi., R. M’Hallah: Strip generation algorithms for constrained two-
dimensional two-staged cutting problems, Euro. J. of Op. Res., ?? (2004)
Article in Press

[13] S. Jakobs: On genetic algorithms for packing polygons, Euro. J. of Op.
Res., 88 (1996) 165-181

[14] D. Liu, H. Teng: An improved BL-algorithm for genetic algorithm of the
orthogonal packing of rectangles, Euro. J. of Op. Res., 112 (1999) 413-420

[15] J. Puchinger, G. R. Raidl, and G. Koller. Solving a real-world glass cutting
problem. In J. Gottlieb and G. R. Raidl, editors, Evolutionary Computation
in Combinatorial Optimization – EvoCOP 2004, Volume 3004 of LNCS,
pages 162-173. Springer, 2004

[16] P. Y. Wang,: Two algorithms for constrained two-dimensional cutting
stock problems, Operations Research 31/3 (1983) 573-586

[17] G. Wascher, H. Haubner, H. Schumann: An Improved Typology of Cutting
and Packing Problems, Working Paper No. 24, Last Revision: 2006-01-16,
Faculty of Economics and Management Magdeburg

[18] K. V. Viswanathan, A. Bagchi, A best first search method for constrained
two-dimensional cutting stock problems, Operations Research 41 (1993)
768-776

