
Serial Bus Monitoring Software for 
Microcontrollers Embedded in Mechatronic 
Systems 

Mircea Popa 
Computer and Software Engineering Department, “Politehnica” University of 
Timisoara, No. 2, Vasile Parvan Blv., 300223 Timisoara, Romania 
Phone: (40) 256 403275, E-mail: mircea.popa@ac.upt.ro 

Marian Vasile 
Computer and Software Engineering Department, “Politehnica” University of 
Timisoara, No. 2, Vasile Parvan Blv., 300223 Timisoara, Romania 
Phone: (40) 256 403275 

Sebastian Fuicu 
Computer and Software Engineering Department, “Politehnica” University of 
Timisoara, No. 2, Vasile Parvan Blv., 300223 Timisoara, Romania 
Phone: (40) 256 403263 

Abstract: The automotive systems hold an important place in the large area of mechatronic 
systems. More and more intelligent embedded modules are included in the automobiles. All 
those modules are based on microcontrollers or similar circuits. A lot of communication 
protocols were developed for transferring data among the microcontrollers embedded in an 
automobile. Among them, the SPI bus was intended primarilly for testing, debugging and 
diagnostic applications. The monitoring of the SPI bus is approached in this paper. SPI 
(Serial Peripheral Interface) is a master – slave bus supported by many microcontrollers. 
Starting from an existing hardware which connects a SPI bus to a PC via the CAN bus, 
dedicated software was created for accessing the information flowing on a SPI bus between 
several modules. There were time and frequency constraints imposed by the application 
and structural constraints imposed by the given hardware based on a ST10F276 
microcontroller. 

Keywords: mechatronic systems, automotive systems, microcontroller, serial 
communication, SPI bus 



1 Introduction 

As part of the huge diversity of the mechatronic systems, the automotive systems 
hold an important place. More and more intelligent embedded modules are 
included in the automobiles. All those modules are based on microcontrollers or 
similar circuits. Modern automobiles contain tens of microcontroller based 
embedded systems and the communication between them became a critical issue. 

A lot of communication protocols were developed for transferring data among the 
microcontrollers embedded in an automobile. All are serial and several of them 
are, [1]: J1850 bus (used for diagnostics and data sharing applications), MI bus 
(used to drive mirrors, seats, window lifts or head light levelers), DSI bus (it links 
sensors and components in the automobile), BST bus (used especially for the air-
bags), MML bus (it is a multimedia bus), Byteflight or SI bus (used for safety 
critical applications in automobiles), FlexRay (it is a high speed serial 
communication bus for in-vehicle networks), D2B bus (connects audio, video, 
computer peripheral and telephone components in a single ring topology within 
the automobile), IDB-1394 (it is the automotive version of the IEEE 1394 or 
Firewire protocol), OBDII bus (it defines a communication protocol and a 
standard connector to acquire data from passengers), SAE J1708 bus (used for 
transferring data between embedded systems in heavy-duty vehicle applications), 
LIN bus (used for in-vehicle communication and networking serial bus between 
intelligent sensors and actuators), CAN bus (used for low-speed applications as 
window or seat control but also for high-speed applications as engine management 
or brake control) and finally SPI bus (used for different in-vehicle communication 
and testing, debugging and diagnostic applications). 

SPI (Serial Peripheral Interface) is a one master – many slaves bus supported by 
microcontrollers from different families. In order to build SPI based multi-
microcontroller systems and for fastening the testing and debugging processes, 
tools for monitoring the bus are necessary. There are such classic tools: digital 
oscilloscopes, logic analyzers etc. They offer information at the bit level, timings, 
voltage levels but they lack a consistent software component and are expensive 
because of the many functionalities they have but are not useful for the monitoring 
of the SPI bus. 

Another solution is to build a dedicated tool through which a PC can monitor the 
SPI bus, accessing all the data transferred on the bus and also being able to insert 
packets on the bus. This tool is financially justified only if it is used where the SPI 
bus is widely used. One can find microcontrollers which offer the hardware 
support for a bridge between the SPI bus and other interfaces but the software 
component is specific for an application or a family of applications and must be 
built for each case. 

A dedicated tool for monitoring a SPI bus is presented in this paper. The tool 
ensures the access of a PC to a SPI bus through a module which achieves a bridge 



between the SPI and CAN buses. The PC is connected to the CAN bus through a 
dedicated card. The CAN bus was used between the PC and the SPI bus because 
the PC – CAN connection is a solved problem and there are fields in which both 
the SPI and CAN buses are used for connecting microcontrollers, the automotive 
field being a good example. Starting from a given hardware module, based on a 
ST10F276 microcontroller, a dedicated software module was created which allows 
the PC to monitor and communicate with the SPI bus offering to the user the 
possibility to receive all the transferred data on the bus for test and debug 
purposes. 

The next section presents other similar works, the third section details the tool 
created, the fourth section reports performances and the last section outlines the 
conclusions. 

2 Related Work 

The problem of accessing a SPI bus through other interfaces was treated in other 
papers too. 

Reference [2] describes a local SPI sensor bus for transferring data from several 
smart sensors to the Internet. The data is converted in 8 bits ASCII code which can 
be read directly by any computer through its serial RS232 port. From the point of 
view approached in this paper, the work can be seen as a SPI – RS232 bridge. 

Another achievement is presented in [3]. Sensor node architecture for distributed 
computation and sensing in distributed embedded systems is described. It is based 
on an Atmel ATMega 128L microcontroller which includes several serial 
interfaces (at the hardware level) such as: I2C, RS232, RS485 and SPI. Bridges 
can be built between these interfaces but a consistent software component is 
necessary to be created. 

A general purpose CAN bus based board is presented in [4]. It is based on a 
microcontroller with several build - in interfaces, including a CAN interface, but 
not a SPI interface, through which transfers can be achieved between those 
interfaces. The specific software component must be created. 

A different and more general approach is described in [5]. The conversion 
between several interfaces is done through the reconfigurable hardware process, 
particularly in wearable systems. In such systems the high performance tasks (e.g. 
video decoding) must be done in severe low energy consumptions conditions, for 
maximizing the battery life. The concept and a prototype implementation of an 
autonomous wearable unit with reconfigurable units are described. The 
reconfiguration is done by ASIC and by adaptive interfaces. 

Unlike the above mentioned achievements, a monitoring tool for a SPI bus is 



presented in this paper which is cheap, having a single major functionality and 
ensures the connection to the CAN bus, which is widely used in embedded 
systems. It is based on a given hardware module, built around a ST10F276 
microcontroller. The software layer was created which allows a PC to access a SPI 
bus via a CAN bus. The PC can monitor and communicate with the SPI bus 
offering to the user the possibility to test and debug an existing SPI system or a 
helpful tool for creating a new SPI system. 

3 The SPI Monitor 

3.1 Hardware 

Figure 1 presents the position of the SPI Monitor in a SPI system. 

 
Figure 1 

The position of the SPI Monitor 

The SPI bus is a one master – many slaves synchronous serial bus, [6]. The 
communication media is made by 3 lines: the serial clock, SCLK, the receive data 
line and the transmit data line. All the receive data lines of the slaves are 
connected to the transmit data line of the master and all the transmit data lines of 
the slaves are connected to the receive data line of the master. The master selects 
each slave through a CS (Chip Select) line. 

The SPI Monitor is connected to the SPI bus through two lines: the serial clock, 
for synchronization with the SPI monitored bus and the receive data line, for 
acquiring the data. Those two lines belong to the microcontroller SPI interface. 
The SPI Monitor has also a number of input lines equal to the number of the 



slaves, connected to the CS slave lines, for determining the moment when a CS, 
meaning a slave, was activated by the master. The SPI Monitor is connected to the 
PC via the CAN bus, [7]. The PC has a CAN card which interfaces it to the CAN 
bus. The data captured on the SPI bus is sent by the SPI Monitor through the CAN 
bus to the PC, where the user can visualize it using a special tool responsible with 
spying the information flowing on the CAN bus. 

The SPI Monitor has a given hardware support, a board based on the ST10F276 
microcontroller, [8]. It is a high performance microcontroller, several of its 
features being the following ones: 16 bit CPU with 4 stages pipeline, single – 
cycle context switching support, flexible memory organization with high capacity 
FLASH and RAM memories both on – chip and external, fast and flexible bus, 
with programmable external bus characteristics for different address ranges, 
multiplexed – demultiplexed external address/ data busses and five programmable 
chip select signals, powerful internal peripheral system with counters, PWMs, 
A/D converters, USART, I2C and two CAN serial channels, advanced interrupt 
system with 16 priority level interrupt system with 56 sources and 8 channel 
Peripheral Event Controller for fast, single cycle interrupt driven data transfer, 
watchdog timer, on – chip bootstrap loader, real time clock, low power modes and 
up to 111 general I/ O port lines individually programmable. 

Starting from this hardware support, the whole software layer was created. 

Because of the time constraints fast transfer mechanisms had to be used. The data 
acquisition was made through the interrupt system, including the PEC interrupts. 
Because of the high amount of time spent with entering and leaving one interrupt 
service routine, the code of those routines was minimal (it was written in assembly 
language and the CPU clock cycles were carefully counted for each instruction). 
Likewise, the capture of the external interrupts, corresponding to the chip selects 
used by the SPI master to activate the SPI slaves, had to be in minimal time, the 
fastest mechanism of the ST10 microcontroller was used, i. e. the fast external 
interrupts. Also for fastening the transfers, the CPU and the CAN1 controller of 
the microcontroller worked in parallel in many situations. The reason was that that 
the process of transmitting the monitored data to the PC is a very slow one. The 
CPU is responsible with preparing in advance the messages sent to the PC on the 
CAN bus by the CAN1 controller. When the CAN1 controller finishes the 
transmission of one message it finds an already prepared message ready to be sent. 

Another limitation was the amount of RAM memory which could be used. Taking 
into account that the reading of the SPI monitored data is a much faster process 
than transmitting it to the PC on the CAN bus, large buffers and an adequate 
technique for managing them were needed. The chosen solution was a big circular 
buffer. It is used commonly to store the information monitored from all SPI 
slaves. The loading of the SPI monitored data into the buffer is made by the 
interrupt service routine corresponding to the SPI interface of the ST10 
microcontroller. A manager, implemented by a function that runs continuously 



when no other function runs, ensures the unloading of the buffer and sending to 
the PC the data. At a very high transmission rate of the SPI frames on the SPI bus, 
this buffer can become full. As a consequence the monitoring process is stopped 
and it is waited for the moment when the manager empties the buffer. After that 
the monitoring process restarts. 

3.2 Software 

Figure 2 presents the structure of the software application. 

 
Figure 2 

The structure of the software application 

The software application is built on two layers, the Applicative Layer (the upper) 
and the BIOS Layer (the lower) and uses other two layers, the Operating System 
(OS) layer and the Interrupt System (IS) layer. The OS is responsible for 
executing the activities assigned by the programmer according to a schedule. It 
initializes the whole application, servers the external and internal watchdogs in 
order to avoid the CPU reset and calls continuously the manager of the upper layer 
when no other instructions are executed by the CPU. The IS is responsible for 
executing the interrupt service routines of the drivers that are on the inferior layer 
whenever the corresponding interrupts occur. These two special layers are 
independent one from the other. The OS is a time – driven layer, meaning that it 
calls its functions based on a time schedule and the IS is a event – driven layer, 
since it calls the ISRs based on the occurrence of some events which are not 
respecting any time rules (the interrupts appear asynchronously). 



The BIOS Layer contains the SPI and CAN drivers. Only the SPI driver was 
created, the CAN driver was given. The SPI driver contains an initialization 
function and the SPI interrupt service routines: the one for handling the receiving 
of SPI data, the one for detecting the SPI errors and also the ISRs corresponding to 
the activation to the activations of the SPI slaves chip selects. The SPI and CAN 
drivers offer support for the Applicative Layer independently from the OS because 
in the case of the CAN driver its functions are directly called by the upper layer, 
according to the strategy of the application manager, and in the case if the SPI 
driver its ISRs are executed based on SPI external events that do not depend on 
the OS (the ISRs are called by the IS). The SPI driver is responsible for storing the 
SPI monitored data into the control and data buffers, which will be used by the 
upper layer, and to detect the SPI errors. The CAN driver offers to the upper layer 
the interfaces for initializing and starting the CAN communication, for reading 
and writing messages on the CAN bus, for reading the state of a CAN logical 
channel, for reading the state of the CAN1 controller and for executing the 
corresponding ISR when a CAN message is received from the PC. 

The Applicative Layer contains the manager, implemented as a function, which 
loads the SPI monitored data (stored by the SPI driver in the buffers) into 
messages to be sent to the PC on CAN. It restarts the SPI monitoring process if it 
has been stopped because the buffer was full and loads the new configurations 
sent by the user for the SPI slaves. Also it notifies the user about the SPI errors 
detected. This layer is called also the upper layer since it contains the manager of 
the whole application, which ensures that the data monitored from a SPI bus is 
routed to the CAN bus. 

Both the SPI and CAN drivers are implemented using one or more software 
modules. Each module consists of a C source file (.c) and a C header file (.h). 

The created and implemented modules are: 

- SPI driver: Bspi.c (contains: the SPI driver initialization function, the RX and 
Error ISRs, the CSx ISRs and others), Bspi.h (contains general SPI driver macros), 
Bcnfspi.c (contains the configuration structures for the SPI slaves) and Bcnfspi.h 
(contains: the configuration of the Interrupt System regarding the SPI driver, the 
configuration of the PEC registers, the configured data buffer length, the 
configured number of slaves, the SPI baud rate macro and others), 

- Applicative Layer: Vsmc.c (contains: the manager of the entire application, the 
function for loading new configurations for the SPI slaves and others) and Vsmc.h 
(contains general application macros). 

Next, some details about the code will be given, e. g. the RX and Error interrupt 
service routines. The RX ISR has the following purposes: to update the RX PEC 
counter when it reaches zero (main purpose), to update the RX PEC destination 
pointer when it exceeds the data buffer superior boundary, to mark the current SPI 
frame as corrupt when the data buffer becomes full and to signalize the occurrence 
of the data buffer full condition. 



RX PEC is the PEC channel used for transferring the newly arrived SPI characters 
to the data buffer of this application. The SPI characters come from SSC (High – 
Speed Synchronous Serial Interface) more exactly from the SSCRB register (one 
of the SFR registers of the SSC interface). The Applicative Layer takes the SPI 
characters corresponding to one SPI frame from this buffer and sends them on the 
CAN bus to be visualized by the user. When the RX PEC counter reaches zero, it 
has to be reloaded by the corresponding ISR, this one, in order to further transfer 
the SPI characters from the SSCRB receiving register to the application data 
buffer. 

The routine starts by verifying whether the RX PEC destination pointer (DSTP) 
exceeds the superior boundary of the data buffer and if so, the destination pointer 
is set up to point to the beginning of the data buffer. 

The next step is to check the data buffer full condition. If this condition is found 
activated it will be verified if the control write index is or is not zero. If it is zero 
the slave ID of the last cell of the control buffer, corresponding to the currently 
received SPI frame, is marked as corrupt. This means that characters of this SPI 
frame will be lost because of the data buffer full condition. 

The next operation is to verify if the RX PEC destination pointer equals the data 
read cursor. If they are equal it means that the writing to the data buffer is faster 
than the reading from the data buffer and that the RX PEC wants to write over 
unread data. As a consequence the data buffer full condition is signalized. In this 
case, the RX PEC is not updated, it remains zero and when the next SPI character 
will arrive it will be lost because the RX PEC will not transfer it into the data 
buffer. This situation, may last for more than one received SPI characters (all will 
be lost) until at least one character from the data buffer was transferred by the 
upper layer, so the transfer from the SSCRB register to the data buffer can 
continue. 

If the RX PEC destination pointer is not equal to the data read cursor, meaning the 
data buffer is not full, one must signalize this situation in case that the data buffer 
has previously been full in order to loose no more SPI characters because now 
there is free space in the buffer. Then, the RX PEC counter must be updated. 

Next, it is verified if the RX PEC destination pointer is greater than the data 
cursor. If this is true, all the cells to the end of the data buffer have been freed by 
the upper layer and the new value for updating the RX PEC counter is calculated 
from the current pointing position of the RX PEC destination pointer to the last 
cell of the data buffer. If the condition is false, the new value for updating the RX 
PEC counter is calculated from the current pointing position of the RX PEC 
destination pointer to the cell indicated by the data read cursor, because this cell 
cannot be overwritten with a new SPI character since it was not read by the upper 
layer and transmitted on the CAN bus. Figure 3 presents the Rx ISR diagram. 

The Error ISR signalizes an SPI error occurrence. Phase error and baud rate error 



can be detected. Whenever a SPI communication error is detected on the SPI bus, 
it has to be notified to the upper layer in order to be signalized to the user through 
sending a message on the CAN bus. Figure 4 presents the Error ISR diagram. 

 
Figure 3 

The RX ISR diagram 



 
Figure 4 

The Error ISR diagram 

The routine starts by disabling the interrupt system in order to prevent the routine 
interruption by a higher priority interrupt. The SSCON register is saved, the error 
flags are cleared and the interrupt system is activated. 

The operations which follow are not critical and process the variable where the 
SSCON register was saved. They can be interrupted. The result is the value that 
will be transmitted by the upper layer on the CAN bus in order to notify the user 
of the appeared SPI error. The reason why the SSCON register is saved in a local 
variable and not processed itself during the amount of time when the interrupt 
system is deactivated is because this operation has is longer than the saving 
operation. When the critical part was executed and the interrupt system was 
activated again, the following operations, which are not so critical, can be 
interrupted. 

4 Performances 

The obtained performances satisfied all the requirements of the application. 

The desired maximum baud rate was 1 Mbps and the obtained one was 6 Mbps. 
Another time requirement was to handle the moment between the activation of the 
CS signal and the occurrence on the SPI data line of the first bit from a frame in 
less than 2µs. The measurements of the duration of the specific sequence 
execution time showed a maximum of 1.95µs, at 44MHz clock frequency. 

For seeing other performances too, the SPI monitor was used in a real project. The 



SPI system was made by one master and two slaves. The communication with one 
of the slaves was achieved through frames with one character of 8 bits and with 
the other one through frames made by nine characters of 8 bits. The SPI baud rate 
for communication was 250 Kbits. The measurements showed that the memory 
consumption was very low: the entire application used only 162 bytes of RAM, 78 
of them being allocated for the control and data buffers. These low RAM needs 
are an important advantage of the application because the memory space in 
embedded system is always drastically limited. 

Conclusions 

The created monitoring tool offers to the user the possibility to receive all the data 
transferred on a SPI bus and to test or debug the bus. The user accesses the SPI 
bus through a PC with added CAN interface which is connected to a CAN – SPI 
module. The user receives the information in numerical format, well structured 
and easy to read. The received information includes the SPI slave ID, taking part 
at the communication, and also a timestamp which makes possible the placement 
of the SPI data on time scale, without needing an oscilloscope. 

Further improvements are possible, by adding several modules and features, such 
as: to support SPI characters with more than 8 bits, to monitor simultaneously both 
data lines of the SPI bus: the receive and the transmit lines, to improve the 
performances by implementing the critical parts of the application in assembly 
language and by optimizing the code, to create a complex graphical user interface 
(GUI) and to use both CAN controllers included in the ST10 microcontrollers 
working simultaneously for increasing the performance. 

References 

[1] http://www.interfacebus.com/Design_Connector_Automotive.html 

[2] D. Wobschall, H. S. Prasad: Esbus – a sensor bus based on the SPI serial 
interface, in Proceedings of IEEE Sensors, Orlando, USA, June 2002, pp. 
1516-1519 

[3] A. Savvides, M. B. Srivastava: A Distributed Computation Platform for 
Wireless Embedded Sensing, in Proceedings of the 2002 IEEE 
International Conference on Computer Design: VLSI in Computers and 
Processors (ICCD’02), IEEE Computer Society, Freiburg, Germany, 
September 2002, pp. 220-225 

[4] H. Boterenbrood, B. Hallgren: The Development of the Embedded Local 
Monitor Board (ELMB), in Proceedings of the 9th Workshop on Electronics 
for LHC Experiments, Amsterdam, Niederlands, September – October 
2003 

[5] C. Plessl, R. Enzler, H. Walder, J. Beutel, M. Platzner, L. Thiele, G. 
Troster: The case for reconfigurable hardware in wearable computing, 
Personal Ubiquitous Computing, Vol. 7, pp. 299-308, 2003 



[6] SPI description – http://www.rpi.edu/dept/ecse/mpsd/SPI.pdf 

[7] CAN Specifications – 
http://www.infineon.com/cmc_upload/migrated_files/document_files/Appli
cation_Notes/can2spec.pdf 

[8] ST10F276 Data Sheet – http://mcu.st.com/mcu/index.php 


