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Abstract: A design and simulation analysis of the neural network-based identification of the
dynamic model of an educational robot is presented in the paper. The structure of
identification module was designed using the same forms of non-linear functions as they
are in the analytic dynamic model of robot. The analytic model is derived using Euler-
Lagrange equations in two modes: for substitution of links masses of the robot arm with
one mass point in the own centre of gravity of each links and for substitution with three
mass points along the links. The weights of the neural network approximate the coefficients
of the motion equations, which coefficients represent the kinematic and dynamic
parameters of the robot’s links.

Keywords: Mechatronic systems, Robotics, Dynamic Model, Neural Networks

1 Introduction

Robots belong to multi-variable, non-linear mechatronic systems with complicated
interaction of the kinematic pairs. Same methods of adaptive motion control of
robots use the dynamic model of robot for linearization of the control system.

The dynamics of robots is described with a set of differential equations. For
deriving of the analytic motion equations of the rigid robot arm the so-called
Euler-Lagrange equations is usually used, which leads to the vector equation of
the robot arm motion and can be written in the next compact form:

M=14,(7.8)+b,.3.2) (1)
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where: g7,7,q are vectors of the joints position, speed and acceleration, £ is the

vector of kinematic and dynamic parameters of the robot arm (lengths, moments
of inertia and masses of the robot’s links), A7 is the vector of generalised forces
(torques) generated by or required for the motion of the joints, 4, is the inertia

matrix and p,, is the matrix of Coriolis, centrifugal and gravitation forces or
torques in the joints of the robot.

The real torque of robot’s servo drives A/, has to get over in addition of A the

friction torque 37, and external load torque A7, :
M,=M+M,+M, ()

Each components of equation (1) depend on the robot’s kinematic and dynamic
parameters £ . The masses of the links are distributed along the links non-

homogeneously. Consequently, accurate derivation of the analytic dynamic model
is very difficult. In robotics a substitution of the real mass of each link with an
equivalent mass point to the centre of gravity of the link is usually used. It is
obvious, if the mass of link is substituted with more masses along the link than the
description of dynamics is more precise, however the computing is more
complicated.

A new method to create the precise dynamic model of robots is using the neural
networks for identification of the robot’s dynamic model. The basic problem of
neural networks is an appropriate network architecture design. Because the non-
linearity of the dynamic model is represented by goniometric functions of the
joints positions (see equation (3)), we can choice for the neural model the same
form of activation functions as they are in the analytic model. One solution is
presented in [5] where the non-linearity and parameters of the motion equations
are approximated by the feed forward network consisting from one hidden layer of
sinusoid neurons followed by an output layer of linear neurons.

Another solution is presented in this paper, where the non-linear elements of the
analytic dynamic model are exactly used in analytic form and the not precisely
known parameters of the dynamic model are identified by neural network.

2 Dynamic Analysis of Robot
In our case we compute the analytical dynamic model of an educational robot
MA2000 for two solutions:

= Substitution of each link mass with one mass point in the centre of
gravity of the link,

= Substitution of each link mass with three mass points along the link.
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2.1 Dynamic Model of the Robot for Substitution of the Link
Mass with One Mass Point in the Centre of Gravity

The kinematical scheme of our educational robot is in Figure 1. The first link is
taken into consideration with its moment of inertia .J;, the second and third with
they mass points m, and m; respectively. The location of mass points of links,
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Figure 1

Kinematical scheme of educational robot

m,, mj are valid for substitution with one mass point in the centre
of gravity of the links.

My, My), M3, M3y, M3y, M33 are valid for substitution with three
mass points along the links.

389



7390

0. Simko et al.
Identification of Robot’s Dynamic Model by Means of Neural Network

the coordinate systems, the centre of gravity and length of the links are visible
from the picture. The first three kinetic pairs of robot are taken into consideration,
which represent the positioning mechanism of the robot. The other three kinetic
pairs for orientation of the robot’s end-effectors have a small masses and small
influence to the robot dynamics and therefore are concentrated as m, to the end
point of the robot arm. The motion equations for the first three joints are (1), (2)
and (3), where the non-linear element at the correspondent acceleration

(}i represents the variable moment of inertia with reference to the joint axis and

the rest elements represent the variable load torque due to interaction of the
kinematical pairs.

1 1
2 2 2 2 2\ 2
Jy+myzy, +Em3yT3 +-m.a; + (sz’Tz +(m3 +mz)a2 )sm (%)"'

2
M, =+ (msyrs +m_a, )az COS(%)_ (msyrs +m_a; )az COS(z% + %)_ g, +
1
- E(msyis + mzasz )COS(2q2 + 2‘]3) 3)

+MyZ0, Y COS(% )‘h “MyZr Vs Sin(% )%2 +
N (mzyi2 + (m3 +m, )a22 )sin(2q2)+ (m3yT3 +m_a, )2a2 sin(2q2 + q3)+ i+
+ (msJ’%s + mzasz )Sin(z% + 2%) o
- (msyrs +m_a, )az Sin(%)"' (msyrs +m_a, )az sin(2q2 + Q3)+ i
+ (m3y§3 + mzasz )Sin(z% + 2%) o
= (mzyiz +my (a; + y;s )"" m, (a22 + ‘132 )"" (msyrz +m.a;, )2‘12 COS(% ))‘]2 +
+m,yr,Zr, COS(qz )‘?1 + (m3y;3 + mza32 + (m3y73 +m.a, )a2 COS(% ))‘73 -
l (mzy;2 + (m3 +m, )a§ )Sin(2q2)+ (msyrs +m.a, )zaz sin(2q2 + q3)+ 2 )
2\+ (msy;3 + m:af )Sin(z% + 2‘13) l
- (ms)’Ta +m.a, )az Sin(q3 )%2 - (m3y73 +m.a, )292 Sin(‘]a )‘izq'a -
- (mzyrz + (ms +m, )a2 )g sin(q2 )_ (m3y73 +m.a, )g Sin(% +q; )

5

M, = (m3y;3 + m:af h} + (m3y%3 + mza32 + (m3yT3 +m.a;, )a2 COS(% ))qz -
_l - (m3yT3 +m.a; )az Sin(% )+ (m3yT3 +m.a;, )az Sin(2q2 + q3)+ 2, Q)
2\ + (m}y%3 + mza32 )sin(Zq2 + 2q3) i

+ (m3yr3 +m_a; )a2 Sin(‘h )q22 - (m3yT3 +m_a; )g sin(q2 + q3)

2.2 Dynamic Model of the Robot for Substitution with Three
Mass Points Along the Links

The kinematical scheme for substitution of the second and third links masses with
three mass points along the links is in Figure 1, where the mass of the second link
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m; is distributed to tree masses m,;, my; my; and the mass m; of the third link is
distributed to tree masses mj;, mj; mj;. The distribution of the links masses is
made by method of substitution of stiff entity by mass points published in [6],
[10]. On the bases of rules for substitution we get the next relationships between
masses

My = My + My, + My My = My + My, + My, ©)
my =2m,, +my, myyr; = m31(a3 - yrs)
My, (222 - ZTZ) = 2m21(ZT2 - 221) Myyzy, = (m31 + 1My )Z31

The different between this solution and the previous one mass point substitution is
expressed by torques AM;, AM, and AM;. Than the final motion equations for
three mass points substitution are:

M =M, +AM, 7
M,, =M, +AM, ®)
My, =M, +AM, ©)
where

2
2m21(zzl t 2132y T 25120 —ZT222])+Em3]a3(a3 _J/T3)+
2 2 2 2 .
aM, = +(m31 + My )231 + My z5, +2m,, yr, Sin (‘Jz)_ q, +

1
—5m31a3 (a3 —Vr3 )005(2% + 2‘13)

+(2m2]y%2 sin(2q2)+m3,a3 (03 —Vr3 )sin(Zqz +2¢q, ))4142 + (10)
+mya, (a3 —Vr3 )sin(Zqz +24, )‘ﬂ%
AM, = (2m21y§2 + m31a3(a3 V3 ))qz + mzlas(as —Vr3 )qs - an
. 1 . )
_(mzlJ’%z SIn(2q2)+Em3la3 (as —ym)sm(qu +2q; )qlzj
AM, =m31a3(a3—yT3)2j3+m31a3(a3—yT3)q2— (12)
1

Y ms,a, (as ~Vr3 )Sin(2q2 +2¢, )%2

From comparision of motion equations (3), (4) and (5) with equations (7), (8) and
(9) follows that the motion equations of both dynamic models contain components
with the same form of goniometric functions (the same non-linearity). The
different between the solution for one mass and mullty mass subtitution of the
link’s inertia is only in the different constant coeficients at the components, which
coeficients exprese the kinematic and dynamic parameters of the links (see
coeficients at goniometric functions sin g;, cos q;, sin(2 q;), sin’ q;, sin (2q; +2q))
and so on).
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3 ldentification of the Dynamic Model

The principal structure of the dynamic model identification is in Fig. 2. The robot
is represented by its analytic dynamic model.

Mm ROBOT 675 677‘6
(analytic dynamics model) "

M| Neural p Nonlinear

parameter input
identification functions
Y
Figure 2

Structure of identification

To minimise the number of neurons and layers we design the neural network
resemble to analytic model. Let we compare the motion equations of the first join
for one mass (3) and tree mass model (7), (10). As we can see both equation can
be written in the form

M =w,G, +w, sinz(q2 )c'jl + W5 cos(q3)éj1 + Wy, cos(Zq2 +4q, )ijl +
+w, 5 c08(2g, + 2, ), +w, ¢ cos(g, )g, +w,, sin(g, )g2 + (13)
+ W sin(2q2 )qlq'z + W, sin(2q2 +q, )qlqz + W sin(2q2 + 2q3)q']q2 +
+wy,,8in(g3)d,d, +wi,, sin(2g, + g5 )d,d; + w1, sin(2g, + 245 )g,4; +
+W 44, +b

Where Wi pseees Wy, 8T€ the weights, which express the kinematic and dynamic

parameters of the robot and their value is different for one mass point or tree mass
point configuration. The component w, .4, + b presents the friction torque, where

b, is the initial value of friction and w,, express the speed dependence of friction.

The identification procedure consist of the:

e Input transformation, which transform the inputs of the identification
module thought non-linearity of the dynamic model according to
equations (14).

e  The neural network with linear transfer function, which creates the output
torque as the sum of the waited output of input transformation according
equation (15). The weights are learned using method of back
propagation.
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P =4, Pie :COS(% )52 Pin =Sin(q3)q'1q'3

P2 =sin’ (qz )‘71 Pz =Sin(q2 )q22 P2 =Sin(2q2 +4; )q.15}3 (14)
P :‘304% )% Pis :Sin(z% )5}1% Piis =Sin(2q2 +2¢, )‘Lq.z

P4 :COS(Z% +9; )% Py =Sin(2q2 +4; )dlqz Prs =4,

Pis :COS(2q2 +2¢, )% Prio =Sin(2q2 +2¢, )5}1%

M, = pureliniwl’[pu +b (15)

i=l1

In the similar way we design the network for approximation of torque M,. The
basic equation for design of the neural network topology is

My =wy G, +w,, cos(q3 )c'j2 + W, ; cos(q2 )c'j1 + W, 4G5 +
+w, 5 cos(q, )i, +w, ¢ sin(2g, )g; +w,, sin(2q, + g, )g; + (16)
T W sin(2q2 +2¢, )‘112 T Wy sin(q3 )‘132 T Wa0 Sin(‘ls )‘jz% +
+w, sin(q2 )+ W, 1, sin(q2 +q, )+ W, 34, +b,

The input functions are:

oy =i Pas =sin(2g, ) Pan =sin(g,)

Pra=cos(g )iy pyy =sin(2g, +q:)df o =sin(g, + ;) an

P2y =cos(q, )i, P =sin(2q, +24, )i Pais =4

Pas =i Py =sin(g, )i

Pas =cos(g; )i Pao =sin(g; )45

The neural network with linear transfer function is

M, = purelini W, P, +b, (18)

i=1

For the torque M3;; is valid the next motion equation:

My =wy, Gy +wy,4, +wyy COS(% )‘]z +
+ Wy, sin(q3 )%2 + Wy sin(2q2 +q, )‘]12 + Wy sin(2q2 +2q, )ql2 + (19)
+w,, sin(g; g3 +wygsin(g, +q; )+ w04, +b,

The input functions are:

P31 = s P3a = sin(q3 )912 P71 = Sin(‘ls )‘]22

Pys =4 Pys =sin(2g, +¢,)i; P =sin(g, +4;) (20)

P = cos(q; )i, P =sin(2q; +24,); Pio =4

The neural network with linear transfer function is
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9
M, = purelinZwupy +b, (21)

i=1

3.1 Learning Neural Network

The network was learned as the inverse neural dynamic model to the robot
analytical dynamic model Fig. 2. To the analytic dynamic model the inputs are the
torques of the joint servo drives and the outputs are the position, speed and
acceleration of the robot joints. The outputs of the analytic model are the input for
the neural identification module including the input transformation. The error for
learning is the different between the real torque of the robot and the approximated
torque by neural network.

For learning of the network the torques were generated according to diagrams in
Fig. 3. The corresponding motion variables 7,7, as the output of the analytic

dynamic model are on the Fig. 4. The motion was generated so that all joints are
running up with constant acceleration, after that are running with constant speed
and braking with constant deceleration.

For training of the network the Levenberg-Marquardt algorithm was used. The
25

learning was finished after the fourth epoch with error less then le .
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Figure 3

Reference torques of joints
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Even though the traning date was generated using the analytic dynamic model, the
learning proccese will be the same for the traning data obtained by measurement
on the real robot.
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Motion variables g ,j j
Conclusions

Methods of analysis of robot’s kinematics and dynamics are generally known and
published in many teaching books of robotics. The direct kinematic analysis is
usually made by Denavit-Hartenberger method, which uses the matrix
transformation between joints coordinates and three-dimensional coorinates and
by maens of MATLAB Toolbox is quite easy and quick to compute. This solution
of robot’s kinematic analysis is implemented to the dynamic analysis, where the
Euler-Lagrange equations are often used. The dynamic analysis using MATLAB
Toolbox is quite easy and quick too.

A problem of analytic dynamic models is they complexity and inaccuracy. We get
the less complex model when the links inertia are assumed as the roll moment of
inertia with respect of joint axis and with the mass point in the center of gravity of
the links. However this dynamic model in many causes is not precise inaf. More
precise models is available at multi mass point substitution of links inertia, but the
model is more complex than before. Other problem is to compute the masses
distribution on links, because in many cases of robots same machanical and
electrical components are instaled inside of the links (sensors, gears, servodrives,
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condutors and so on). The best precisity is available if we identify the robot’s
dynamic parameters by measurement directly on the robot.

One of the possible solution using neural network is presented in the paper. The
designed neural model observe the structure of the analytic model and thereby the
physical meaning of the derived torque components are remained. It means that
the sum of componets at the joint acceleration in the torque equation gives the
variable moment of inertia and the sum of less components give the variable load
torque consisting from centrifugal, coriolis, gravitation and friction torgues (for
examle compare the eq. (13) with its general form (1)). The advantege of that
structure is that same of adaptive controls [1], [S] use these physical moments of
inertia and load torque for adaptation of the feedback control system.
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