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Abstract: A design and simulation analysis of the neural network-based identification of the 
dynamic model of an educational robot is presented in the paper. The structure of 
identification module was designed using the same forms of non-linear functions as they 
are in the analytic dynamic model of robot. The analytic model is derived using Euler-
Lagrange equations in two modes: for substitution of links masses of the robot arm with 
one mass point in the own centre of gravity of each links and for substitution with three 
mass points along the links. The weights of the neural network approximate the coefficients 
of the motion equations, which coefficients represent the kinematic and dynamic 
parameters of the robot’s links. 
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1 Introduction 

Robots belong to multi-variable, non-linear mechatronic systems with complicated 
interaction of the kinematic pairs. Same methods of adaptive motion control of 
robots use the dynamic model of robot for linearization of the control system. 

The dynamics of robots is described with a set of differential equations. For 
deriving of the analytic motion equations of the rigid robot arm the so-called 
Euler-Lagrange equations is usually used, which leads to the vector equation of 
the robot arm motion and can be written in the next compact form: 

( ) ( )ξξ ,,, qqbqqAM MM
&&& +=  (1) 
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where: qqq &&& ,,  are vectors of the joints position, speed and acceleration, ξ  is the 
vector of kinematic and dynamic parameters of the robot arm (lengths, moments 
of inertia and masses of the robot’s links), M  is the vector of generalised forces 
(torques) generated by or required for the motion of the joints, MA  is the inertia 
matrix and Mb  is the matrix of Coriolis, centrifugal and gravitation forces or 
torques in the joints of the robot. 

The real torque of robot’s servo drives mM has to get over in addition of M the 
friction torque

trM and external load torque VM : 

Vtrm MMMM ++=  (2) 

Each components of equation (1) depend on the robot’s kinematic and dynamic 
parametersξ . The masses of the links are distributed along the links non-
homogeneously. Consequently, accurate derivation of the analytic dynamic model 
is very difficult. In robotics a substitution of the real mass of each link with an 
equivalent mass point to the centre of gravity of the link is usually used. It is 
obvious, if the mass of link is substituted with more masses along the link than the 
description of dynamics is more precise, however the computing is more 
complicated. 

A new method to create the precise dynamic model of robots is using the neural 
networks for identification of the robot’s dynamic model. The basic problem of 
neural networks is an appropriate network architecture design. Because the non-
linearity of the dynamic model is represented by goniometric functions of the 
joints positions (see equation (3)), we can choice for the neural model the same 
form of activation functions as they are in the analytic model. One solution is 
presented in [5] where the non-linearity and parameters of the motion equations 
are approximated by the feed forward network consisting from one hidden layer of 
sinusoid neurons followed by an output layer of linear neurons. 

Another solution is presented in this paper, where the non-linear elements of the 
analytic dynamic model are exactly used in analytic form and the not precisely 
known parameters of the dynamic model are identified by neural network. 

2 Dynamic Analysis of Robot 

In our case we compute the analytical dynamic model of an educational robot 
MA2000 for two solutions: 

 Substitution of each link mass with one mass point in the centre of 
gravity of the link, 

 Substitution of each link mass with three mass points along the link. 
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2.1 Dynamic Model of the Robot for Substitution of the Link 
Mass with One Mass Point in the Centre of Gravity 

The kinematical scheme of our educational robot is in Figure 1. The first link is 
taken into consideration with its moment of inertia J1, the second and third with 
they mass points m2 and m3 respectively. The location of mass points of links, 

 
Figure 1 

Kinematical scheme of educational robot 

m2, m3 are valid for substitution with one mass point in the centre 
of gravity of the links. 

m21, m22, m23, m31, m32, m33 are valid for substitution with three 
mass points along the links. 
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the coordinate systems, the centre of gravity and length of the links are visible 
from the picture. The first three kinetic pairs of robot are taken into consideration, 
which represent the positioning mechanism of the robot. The other three kinetic 
pairs for orientation of the robot’s end-effectors have a small masses and small 
influence to the robot dynamics and therefore are concentrated as mz to the end 
point of the robot arm. The motion equations for the first three joints are (1), (2) 
and (3), where the non-linear element at the correspondent acceleration 

iq
..

represents the variable moment of inertia with reference to the joint axis and 
the rest elements represent the variable load torque due to interaction of the 
kinematical pairs. 
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2.2 Dynamic Model of the Robot for Substitution with Three 
Mass Points Along the Links 

The kinematical scheme for substitution of the second and third links masses with 
three mass points along the links is in Figure 1, where the mass of the second link 
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m2 is distributed to tree masses m21, m22, m23 and the mass m3 of the third link is 
distributed to tree masses m31, m32, m33. The distribution of the links masses is 
made by method of substitution of stiff entity by mass points published in [6], 
[10]. On the bases of rules for substitution we get the next relationships between 
masses 
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33323132322212
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mmmmmmmm

TT

TT
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  (6) 

The different between this solution and the previous one mass point substitution is 
expressed by torques ΔM1, ΔM2 and ΔM3. Than the final motion equations for 
three mass points substitution are: 

11113 MMM Δ+=  (7) 

22123 MMM Δ+=  (8) 

33133 MMM Δ+=  (9) 

where 
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From comparision of motion equations (3), (4) and (5) with equations (7), (8) and 
(9) follows that the motion equations of both dynamic models contain components 
with the same form of goniometric functions (the same non-linearity). The 
different between the solution for one mass and mullty mass subtitution of the 
link´s inertia is only in the different constant coeficients at the components, which 
coeficients exprese the kinematic and dynamic parameters of the links (see 
coeficients at goniometric functions sin qi, cos qi, sin(2 qi), sin2 qi, sin (2qi +2qj) 
and so on). 
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3 Identification of the Dynamic Model 

The principal structure of the dynamic model identification is in Fig. 2. The robot 
is represented by its analytic dynamic model. 
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Figure 2 

Structure of identification 

To minimise the number of neurons and layers we design the neural network 
resemble to analytic model. Let we compare the motion equations of the first join 
for one mass (3) and tree mass model (7), (10). As we can see both equation can 
be written in the form 
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Where 
14,11,1 ,, ww K are the weights, which express the kinematic and dynamic 

parameters of the robot and their value is different for one mass point or tree mass 
point configuration. The component 

1114,1 bqw +& presents the friction torque, where 
b1 is the initial value of friction and 14w  express the speed dependence of friction. 

The identification procedure consist of the: 

• Input transformation, which transform the inputs of the identification 
module thought non-linearity of the dynamic model according to 
equations (14). 

• The neural network with linear transfer function, which creates the output 
torque as the sum of the waited output of input transformation according 
equation (15). The weights are learned using method of back 
propagation. 
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In the similar way we design the network for approximation of torque M2. The 
basic equation for design of the neural network topology is 
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The input functions are: 

( ) ( )
( ) ( ) ( )
( ) ( )

( )
( ) ( ) 3231023352

2
3392342

2132
2
132821232

32122
2
132722322

2112
2
1262212

sincos
sin

22sincos

sin2sincos

sin2sin

qqqpqqp
qqpqp

qpqqqpqqp

qqpqqqpqqp

qpqqpqp

,,

,,

,,,

,,,

,,,

&&&&

&&&

&&&&

&&&

&&&

==

==

=+==

+=+==

===

 (17) 

The neural network with linear transfer function is 
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For the torque M33 is valid the next motion equation: 
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The input functions are: 

( ) ( )
( ) ( )

( ) ( ) 393
2
132632333

3283
2
13253223

2
2373

2
1343313

22sincos

sin2sin

sinsin

qpqqqpqqp

qqpqqqpqp

qqpqqpqp

,,,

,,,

,,,

&&&&

&&&

&&&&

=+==

+=+==

===
 (20) 

The neural network with linear transfer function is 
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3.1 Learning Neural Network 

The network was learned as the inverse neural dynamic model to the robot 
analytical dynamic model Fig. 2. To the analytic dynamic model the inputs are the 
torques of the joint servo drives and the outputs are the position, speed and 
acceleration of the robot joints. The outputs of the analytic model are the input for 
the neural identification module including the input transformation. The error for 
learning is the different between the real torque of the robot and the approximated 
torque by neural network. 

For learning of the network the torques were generated according to diagrams in 
Fig. 3. The corresponding motion variables qqq &&& ,,  as the output of the analytic 
dynamic model are on the Fig. 4. The motion was generated so that all joints are 
running up with constant acceleration, after that are running with constant speed 
and braking with constant deceleration. 

For training of the network the Levenberg-Marquardt algorithm was used. The 
learning was finished after the fourth epoch with error less then 1e

-25
. 

 
Figure 3 

Reference torques of joints 
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Even though the traning date was generated using the analytic dynamic model, the 
learning proccese will be the same for the traning data obtained by measurement 
on the real robot. 

 
Figure 4 

Motion variables qqq &&& ,,  

Conclusions 

Methods of analysis of robot´s kinematics and dynamics are generally known and 
published in many teaching books of robotics. The direct kinematic analysis is 
usually made by Denavit-Hartenberger method, which uses the matrix 
transformation between joints coordinates and three-dimensional coorinates and 
by maens of MATLAB Toolbox is quite easy and quick to compute. This solution 
of robot´s kinematic analysis is implemented to the dynamic analysis, where the 
Euler-Lagrange equations are often used. The dynamic analysis using MATLAB 
Toolbox is quite easy and quick too. 

A problem of analytic dynamic models is they complexity and inaccuracy. We get 
the less complex model when the links inertia are assumed as the roll moment of 
inertia with respect of joint axis and with the mass point in the center of gravity of 
the links. However this dynamic model in many causes is not precise inaf. More 
precise models is available at multi mass point substitution of links inertia, but the 
model is more complex than before. Other problem is to compute the masses 
distribution on links, because in many cases of robots same machanical and 
electrical components are instaled inside of the links (sensors, gears, servodrives, 
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condutors and so on). The best precisity is available if we identify the robot´s 
dynamic parameters by measurement directly on the robot. 

One of the possible solution using neural network is presented in the paper. The 
designed neural model observe the structure of the analytic model and thereby the 
physical meaning of the derived torque components are remained. It means that 
the sum of componets at the joint acceleration in the torque equation gives the 
variable moment of inertia and the sum of less components give the variable load 
torque consisting from centrifugal, coriolis, gravitation and friction torgues (for 
examle compare the eq. (13) with its general form (1)). The advantege of that 
structure is that same of adaptive controls [1], [5] use these physical moments of 
inertia and load torque for adaptation of the feedback control system. 
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