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Abstract: Abstract: Software compensation of geometric errors in coordinate measuring is 
hot subject beause it results the descrease of manufturing costs. The papergives a summary 
of the results and achivements of earlier works on the subject. In order to improve these 
results a methode is adapted to capture simultaneously the new coordinate frames in order 
use exact transformation values at discrete points of the measuring volume. The 
interpolation techniques used have the draw back that they could not maintain the 
orthogonality of the rotational part of the transformation matrices. The paper gives a 
technique based quaternions which avoid this problem andleads to better results. 

1 Introduction 

Three dimensional coordinate metrology is a firmly established technique in 
industry. Their universal applicability and high degree of automation accounts for 
it’s success in the last 30 years. In order to full-fill its task to verify the geometry 
of products on the basis of the measured results, CMM-s must be in principally be 
an order of magnitude more accurate than the machine tool used to manufacture 
the part. 

Over the last 50 years one can observe enormous enhancement in positioning and 
measuring accuracy. The main portion of this enhancement is the result of 
improved knowledge about high precision machine design [18]. A foundamental 
principle was recognised by professor Abbe already in the 1890’s about the 
aligment of the displacement measuring system with the distance to be measured. 
Another fundamental principle is the separation of the structural and measuring 
functions in a machine. Already in the 1880’s measuring equipment was built in 
wich the measuring system was attached to a separate metrology frame. The third 
important factor, to be conserned, is the thermal distorsion of the metrology 
system. A short overview of novel constructions for high precision coordinate 
measuring machines is given in [8]. 
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As mechanical accuracy is costly, whereas repeatability is not expensive, software 
techniques were used from the beginning to compensate for the systematic errors 
in order to keep manufacturing costs low. 

One of the earliest paper on error compensation of coordinate measuring machines 
is by Zhang et al. [25]. They describe the compensation of a bridge type industrial  
three-coordinate measuring machine, which resulted in an accuracy improvement 
by approximatly a factor 10. The machine consist of only translational axis and the 
infinitesimal rotation errors are described by the rotation matrix where the 
trigonometric functions are replaced by the first term in their Taylor series. The 
correction vectors are determined at equally spaced points in the measuring 
volume and are stored in the memory of the computer in the form of look-up table. 
The correction vectors at intermediate point are calculated simply by linear 
interpolation. 

An analytical quadratic model for the geometric error of a machine tool was 
developed by Ferreire and Liu [6] using rigid body kinematics. They introduced 
the notion of  shape and joint transform. The former describes the transformation 
between the coordinate system on the same link and latter the transformation 
across a joint. To represent the transformations they introduced the use of 
homogeneous transformation in matrix form. A quadratic expression was 
developed for the case where the individual  joint errors vary linearly with the 
movement along the joint or axis. The global error description was obtained by 
concatenating these matrices. 

Duffie and Yang [2] invented a methode to generate the kinematic error functions 
from volumetric error measurements. To represent the displacement error a 
vectorial approach was followed. The rotational errors were described by matrices 
in which, taking into account that the angular error are small, the cosine and the 
sine terms can be approximated with the lowest order terms of their Taylor series. 
The model was used to describe the error of a measuring probe neglecting the 
rotation. The translational error components were approximated by cubic 
polynomials. To find the coefficients least square fit was applied. 

Teeuwsen [20] described the error motion of the kinematic components of a 
coordinate measuring machine by using homogeneous transformations and 
concatenating these transformations to calculate the resulting global error. 
Assuming that the rotational errors are very small, he neglected the second order 
term. Hereby he could ensure the commutativity of the matrices, but at the same 
time the orthonormality of these matrices was lost, whic means that they do not 
represent a pure rotation anymore. The error motions of the probe displacements 
was also handled by tranformation matrices. In order to establish the error map in 
the form of correction vectors the various error components were measured on a 
semi automatic way at discrete points of the measuring volume. To obtain a 
continuous description of the correction vector, between these points, regression 
was used to establish a piecewise polynomial representation. 
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Ruijl [15] has build a high precision coordinate measuring machine with a 
measuring uncertainty of 50 nm in a 100x100x40 mm measuring volume. The 
machine has a novel contruction, where the air bearing tabel performs the 
measuring motion in all the three principal directions. It was derived that if the 
measuring systems are aligned with the centre of the probe tip the relationship 
between the position of the measuring system and the contact point on the 
workpiece is unique. This means that the functional point is the centre of the probe 
tip and hence it is possible to comply with the Abbe priciple. The nano measuring 
machine of SIOS [17] is based on the same principles. This machine is currently 
applied as the stage for a long range scanning microscoop. 

Kim et al. [12] have constructed an unusual machine. One attempt to get rid of the 
parallax error of orthogonal type coordinate measuring machines is the application 
of the so-called multilateration. It is to measure the diagonal distances of the probe 
using tracking laser interferometers with retro-reflectors. The paper describes a 
scheme of multilateration based on a single volumetric interferometer system. The 
volumetric interferometer generates two spherical wavefronts from the probe by 
using diffraction point sources. The emaneted wavefronts interfere within the 
measuring volume, while two dimensional array of photodetectors mounted on the 
machine frame capture  the interferometric intensity field. Phase information is 
used, from which the coordinates of the probe are determined. A second 
interferometer is installed to measure the x and y position of the machine table. 

Kim and Chung [11] also applied infinidesimal matrix transformation to correct 
the position error due to geometric inperfections and transient thermal errors of a 
machine tool to improve on machine measurement accuracy. Thermal errors were 
derived from the thermal drift of the spindle in the three principle directions. 

The static and transient thermal errors and their compensation are discussed by 
Kruth et al. [13]. Capturing temperature distribution of the machine structure the 
thermal deformations can be calculated using the linear thermal expansion 
coefficients of the individual machine components. However the determination of 
sensor positions in a cumbersome ’trial and error’ task. 

Recently in a paper Tan and his coauthors [19] describe the application of neural 
networks for the error compensation of single-axis, a gentry and X-Y stage. The 
advantage of using neural networks is in the followings: they could be used to 
approximate any continuous mapping. This mapping can be achived by learning. 
Parallel processing and nonlinear interpolation can also be performed. Using this 
technique the authors could improve the positioning accuracy depending on the 
configuration investigated by a factor between two and three. 
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2 Overview of the Errors and their Sources 

When considering the mechanical accuracy of coordinate measuring devices three 
primary sources of  quasi-static errors can be identified: 

• Geometric errors due to the limited accuracy of the individual machine 
components such as guideways and measuring systems. 

• Errors related to the final stiffness of those components, mainly by 
moving parts. 

• Thermal errors as expansion and bending of guideways due to uniform 
temperature changes and temperature gradients. 

Geometric errors are caused by out of straightness of the guideways, imperfect 
alignment of the axis and flatness errors. 

Deformations in the metrology frame introduce measuring errors. During 
measurement the deformation of the metrology frame is caused by the probing 
force. Its effect can be predicted with relatively high precision if the probing force 
is known and therefore it easily incorporated into the model. 

The static deformation of the table is caused be gravity forces. It manifests itself 
as a contribution to out of flatness error. That means it can be handled on a similar 
way. 

The largest deformations of the metrology frame are thermally induced. The main 
sources of the thermal disturbance are: 

• heating and cooling source in the environment, like lighting, air 
conditioning, people around the machine, etc., 

• heat generated by the machine itself, 

• thermal memory: heat stored in the machine components from a 
previous thermal state. 

The compensation of thermally induced errors is rather cumbersome, because of 
the complexity of the problem [13]. Based on results from the literature a linear 
thermal compensation model can be used. 

3 Geometric Error Model 

A coordinate measuring machine is a multiaxis machine consisting of a chain of 
translational and/or rotational kinematic components. The geometric deviation of a 
CMM is originating from the geometric deviations of its components. In order to 
discuss a general model the error model of the components are dicussed. 
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The measuring loop of a coordinate measuring machine in general is given in 
Figure 1. Depending on the configuration of the machine all measuring motions 
are performed by the probe or by the table, or divided between the two. 

 
Figure 1 

Schema of the metrology loop 

A linear stage of precision machinery is expected to travel along a straight line and 
stop at a predefined position. However in the practiced the actual path deviate 
from the straight line due to the geometric errors of the guideways and it results 
also in angular errors as it is given in Fig. 2. 

 
Figure 2 

Representation of the six deviations of a translational kinemetic component 
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For each axis a transformation matrix can be used to describe in homogenious co-
ordinates the deviations from the ideal motion. The general form of a 
transformation is given by: 
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Where δx, δy and δz are the translational and θx, θy and θz are the rotational 
components and s respectively c are short for sin and cos. 

In case of the coordinate table the angular errors are very small, and all the errors 
are position dependent the following approximation can be made: 
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Analog results can be derived for the y and z axis. Rotational components can 
presented on the same way and results in rather similar matrix. 

 
Figure 3 

Representation of the six deviation of a rotational kinematic component 

These components are called guided element. The guided moving elements are 
linked by socalled connecting elements, which can be represented by matrices 
with similar structure with only constant elements. 

The resulting error matrix can be obtained by multiplying the individual matrices 
in the sequence as they follow each other in the kinematic chain. 
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A traditional co-ordinate measuring machine consists of three translational 
components x, y and z, and a probe is attached to the end of the z component. 
Usually the probe can be considered as a constant translational transformation. 

In case of a measuring probe its error components can be handled on the similar 
way as it was done in case of a carriege and a rotational element. 

4 Errors of a Coordinate Measuring Machine with 
three translational components 

In order to illustrate the application of the technique described in the previous 
paragraph, let us consider a coordinate measuring machine with three translational 
components, given in Fig. 4. 

Figure 4 
The investigated coordinate measuring machine 

The carriage consists of two nested tables; each of them has four legs which in 
turn rests on vacuum preloaded air bearings. The reference plate is lapped to an 
accuracy of 0,5 µm. The axes are driven by piezomotors. The position are 
determined by an incremental two co-ordinate optoelectronic measuring system, 
having 0,05 μm resolution, attached to the bottom face of the inner table. This 
results in a lightweight construction, which in turn ensures fast (acceleration up to 
20 m/s2) and accurate positioning (less than 0,1 μm). 
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The probe is attached to a pinole running in an air bushing driven by a piezo 
motor, with approximately 5 nm resolution. A counter weight minimizes the force 
needed for lifting the probe. The displacement is measured with a linear 
optoelectronic scale having a resolution of 0,05 μm. 

Figure 5 
The frames of the CMM 

The position dependent transformation matrices for the table (Ttable) and the probe 
(Tprobe) coordinate frames are given below: 
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Here again δx, δy and δz and εx, εy, εz stand for the translational and θx, θy and θz 
and φx, φy, φz  for the rotational errors of respectively the table and the probe. The 
constant values Xc, Yc and Zc are the offset coordinate distances between the 
machine coordinate system and the coordinate system attached to the workpiece to 
be measured. Zref is the probe reference point and Zl is the probe length. 

The coordinate values captured by the CMM are: 
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If for accuracy reason one may not substitute α for sinα and 1 for cosα than the 
commponents of each matrix describing the transformation should be captured in 
simultaneously. In the subsequent paragraph a suitable methode is outlined. 

5 Determination of the Geometric Errors by 
Measurement 

For the calibration of coordinate measuring machines Zhang et al. [23] proposed 
to determine the angular errors by measuring the displacement errors along two 
parallel lines to the axis of motion but separeted by a distance in the appropriate 
orthogonal direction. 

In a more recent paper Zhang and Fu [24] describe the calibration of optical 
CMM-s using an uncalibrated reversible grid plate in three positions. In the initial 
position the plate is aligned with the machine coordinate system. Next it is 
reversed about Y axis of the machine. In the third position the grid is rotated 90º 
about the Z axis. To determine the scale error one of the machine axis should be 
calibrated by a laser interferometer. 

A simple measuring technique was invented by Fan et al. [3] to determine the 
motion accuracy of a linear stage. The idea is based on the fact that the position 
and orientation of a rigid body can be determined by appropriatly selected six 
point. They measure the displacement of these points and calculate from them the 
rotational and translational error components. The displacement in the motion 
direction and the angular errors (pitch and yaw) perpendicular to this directions 
are measured by three laser interferometers. The roll and the straightness errors 
are captured by an optical setup containing two quadrant photodetectors. Taking 
again into considerations that the angular error are small their values are replaced 
by their tangent. The invention initiated the development a dual and triple beam 
interferometers. 

The above mentioned authors published a paper [5] about the measurement to 
determine the accuracy of a high precision wafer stage. Therefor 6-DOF errors of 
its positioning accurcy is significant. An improved version of the above described 
system was used. The moving part of it is an L-shaped mirror and on top of one 
leg a long right angle mirror. The stationary part  consists of four laser heads, two 
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beam splitters and two quadrant photo detectors. The laser heads use four laser 
Doppler scales, three of which are parallel to each other. The uper two laser beams 
can be reflected by the long right-angle mirror and the lower one by the Y leg of 
the L shaped plane mirror. The fourth laser beam is aligned in the X-axis and 
reflected by the X mirror. Comparing the four linear measurements by four laser 
doppler scales, the X and Y positioning error of the moving table and its pitch and 
yaw errors can be determined. The upper two reflecting beams are split and each 
split beam is received by a quadrant photo detector. Comparing these signals the 
vertical straightness and the roll error can be derived at the same time. In order to 
minimize the cosine errors among the three displacement measurement and to 
ensure angular accuracy of the pitch and yaw measurements the parallelism of 
these beam should be precisely adjusted. The system takes into consideration the 
squareness aligments and the the flatness error of the plane mirrors. 

In their paper Gao et al. [7] describe the measurement straightness and rotational 
error motions of a commercially available linear airbearing stage actuated by a 
linear motor. The pitch and yaw errors wre measured by an autocllimator. For the 
roll error measurement two capacitive displacement probes scan the flat surface in 
the XZ plane The probes with their sensing axis in the Y direction were aligned 
with a certain spacing. The roll error is obtained by dividing the difference of the 
outputs of the two probes by the spacing between them. The horizontal and 
vertical strightness error were measured by using the strigthness kit of a laser 
interferometer. 

The setup to detect motion errors of the linear stage uses two laser interferometers 
[16] and three capacitive sensors [14] is given in Fig. 4. The stationary part 
consists of a single and a dualbeam laser interferometer and three capacitive 
sensors perpendicular to each other. Both translational and rotational errors can be 
derived out of the displacement values captured by the transducers. 

 
Figure 6 

Set up for determining the motion error of a linear stage 
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Figure 7 
The measuring points on the surface of the artifact and their relations to each other 

Where d1, d2 and d3 represent the distance between the laserbeams respectively the 
capacitive sensors parallel to the coordinate axis. 

By expanding the following determinants the equations of the table’s boundary 
planess can be determined. These equations can be used to compute the origo of 
the new coordinate system and its principal axis. Having these values one can 
directly draw up the transformation matrix. 
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6 Error Compensation Scheme 

The error matrices are captured at discrete points of the measuring volume. To be 
able to model the behaviour of the machine in between the matrices should be 
interpolated. Componentwise interpolation leads to a nonorthonornal rotational 
part which sgould be avoided. We may consider these matrices as a Lie group and 
trie to to do the interpolation using techniques from their theory. However this is a 
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tedious job. Let us decompose the matrix into a rotational part and a displacement 
vector describing the motion of the machine components as follows: 
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Here the position dependent displacement vector poinrs can be interpolated by a 
piecewiese polynomial space curve while the rotational matrix remains to be 
interpolated. However there are simple techniques available based on the 
application of quaternions. 

Quaternions [1] were invented by Sir William Hamilton in 1843. He realized that 
four number are needed to describe a rotation followed by a scaling. One number 
describes the size of scaling, one the number of degrees to be rotated, and the lst 
two numbers give the plane in which the vector should be rotated. Quaternions 
consists of a scalar part sЄR and v = (x,y,z)ЄR3: 

q ≡ [s,v] ≡[s,(x,y,z)] ≡ s + ix + jy + kz 

where 

í2 = j2 = k2 = ijk = -1, ij = k and ji = -k 

If q is a quaternion with q = [cosθ,sinθn] and p is a quartenion p = [0,r] then p’ = 
qpq-1 is p rotated 2θ about the axis n. 

Given a transformation matrix M the corresponding unit quaternion is can be 
calculated in two steps: first we must find s which is equal to: 

443322112
1 MMMMs +++±=  
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Where the M-s are the determinants of the respective submatrices. 

A socalled spherical linear quaternion interpolation (Slerp) can used to compute 
the intermediate quaternions. The quaternions generated by Slerp are unit 
quaternions, which means that they represent pure rotation matrices. The formula 
for for Slerp is: 
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where •  stands for the inner product defined as ''''' zzyyxxssqq +++=•  

An even better (smoother) interpolation can be formulated  which is the spherical 
cubic equivalent of a Beziér curve. This is called Squad and this defined by: 

Let q1, ..., qn point on the unit sphere. Find the cubic spline which interpolate the 
points in the given sequence. This can be achived by the following formula: 

Squad (qi, qi+1, si, si+1, h) = Slerp(Slerp(qi, qi+1, h), Slerp(si, si+1, h), 2h(1-h)) 

where si are 

si =qi ⋅ exp ⎝
⎛

⎠
⎞- 

log ⋅ (qi
-1qi+1)+ log ⋅ (qi

-1qi-1)
 4   

where logq and exp q are defined as follows: 

if q = [cosθ,sinθv] then logq ≡ [0,θv] and if q = [0,θv] then expq ≡ [cosθ,sinθv] 

The suggested procedure to find the intermediate rotation matrices consists of the 
following steps: 

• Convert the matrices captured by the procedure described in paragraph 4. 
in quaternions, 

• Find the Squad interpolation of these points, 

• Convert the quaterinon splines back into matrix form. 

On this way a spherical spline representing pure rotation of the object will be 
obtained. The translational error can be handled by finding a spatianel 
interpolation spline function using for example least square fit. In the posession of 
these functions one can easely reconstruct the real coordinate values of the 
measured point. 

Conclusions 

The paper presents a new approach to the compensation of geometric errors in 
coordinate measuring machines. It consists of a measuring procedure which 
captures simultaneously the six error components of moving rigid body. The 
transformation matrices obtained on this way are interpolated by using quaternion 
representation. Hereby the orthonormality of the rotation matrices are maintained. 
Simulation values with randomly generated error components showed that the 
intermediate values lead to accuracy inprovement. 
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