Representation of the revised monotone functional by the Choquet integral with respect to signed fuzzy measure

Biljana Mihailović^a, Endre Pap^b

^aFaculty of Engineering, University of Novi Sad Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia e-mail: lica@uns.ns.ac.yu
^bDepartment of Mathematics, University of Novi Sad Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia e-mail: pape@eunet.yu

Abstract: The signed fuzzy measures are considered and some of their properties are shown. There is introduced the revised monotone functional and there are given conditions for its asymmetric Choquet integral-based representation.

Key words and phrases: revised monotonicity, signed fuzzy measure, Choquet integral.

1 Introduction

Due to its special non linear character, the Choquet integral with respect to a fuzzy measure, is one of the most popular and flexible aggregation operator [3, 5, 17]. The basic features of Choquet integral, defined for non-negative measurable functions, are monotonicity and comonotonic additivity, see [1, 3, 10]. For an exhaustive overview of applications of Choquet integral in the decision under uncertainty we recommend [2, 8, 9, 14, 15, 18]. Recall that non-negative set function m such that $m(\emptyset) = 0$ and $A \subset B$ implies $m(A) \leq$ m(B) (monotonicity), is called by various names, such as *capacity, non-additive measure, fuzzy measure.*

A generalized fuzzy measure, a signed fuzzy measure, introduced by Liu in [6], is a revised monotone, real-valued set function, vanishing at the empty set, see [10]. Murofushi et al. in [7] used term non-monotonic fuzzy measure to denote a real-valued set function satisfying $m(\emptyset) = 0$. In this paper we deal with a signed fuzzy measure in the sense of definition given in [6].

The properties of two usual extensions of Choquet integral to the class of

all measurable functions have been studied by various authors [1, 3, 7, 10]. The first one extension, the symmetric Choquet integral, introduced by Šipoš, is homogeneous with respect to multiplication by a real constant and the second one, the asymmetric Choquet integral is comonotone additive and homogeneous with respect to multiplication by a non-negative constant. In both cases the monotonicity is violated. The asymmetric Choquet integral is defined with respect to a real-valued set function m, not necessary monotone.

The fuzzy integral defined with the use of maximum and minimum operators was introduced by Sugeno in [16]. The Sugeno integral is defined on the class of functions whose range is contained in [0, 1] and with respect to a normalized fuzzy measure. It is comonotone- \vee -additive (comonotone maxitive), \wedge -homogeneous and monotone functional. An extension of the Sugeno integral in the spirit of the symmetric extension of Choquet integral is proposed by M. Grabisch in [4]. The symmetric Sugeno integral is neither monotone nor commonotone - \vee -additive in general. In the paper [13] authors considered a representation by two Sugeno integrals of the functional L defined on the class of functions $f: X \to [-1, 1]$ on a finite set X. In the case of infinitely countable set X there was obtained that the symmetric Sugeno integral is comonotone- \heartsuit -additive functional on the class of functions with finite support.

In this contribution we will deal with a revised monotonicity of a real-valued set function m, $m(\emptyset) = 0$ and asymmetric Choquet integral with respect to m. In the next section the short overview of basic notions and definitions is given. In Section 3 we consider a revised monotonicity of real-valued set functions vanishing at the empty set. Finally, in Section 4 we introduce a revised monotone functional and discuss the conditions for its asymmetric Choquet integral-based representation.

2 Preliminaries

Let $X = \{x_1, \ldots, x_n\}$ be a finite set. Let $\mathcal{P}(X)$ be class of subsets of universal set X. We have by [6, 10] the following definition.

Definition 1 A real-valued set function $m : \mathcal{P}(X) \to \mathbb{R}$, is a signed fuzzy measure if it satisfies (i) $m(\emptyset) = 0$

(i) $m(\emptyset) = 0$ (ii) (RM) If $E, F \in \mathcal{P}(X), E \cap F = \emptyset$, then

a) $m(E) \ge 0, m(F) \ge 0, m(E) \lor m(F) > 0$	\Rightarrow	$m(E \cup F) \ge m(E) \lor m(F);$
b) $m(E) \le 0, m(F) \le 0, m(E) \land m(F) < 0$	\Rightarrow	$m(E \cup F) \le m(E) \land m(F);$
c) $m(E) > 0, m(F) < 0$	\Rightarrow	$m(F) \le m(E \cup F) \le m(E).$

The conjugate set function of real-valued set function $m, m : \mathcal{P}(X) \to \mathbb{R}$ is defined by $\overline{m}(E) = m(X) - m(\overline{E})$, where \overline{E} denotes the complement set of $E, \overline{E} = X \setminus E$. Obviously, if m is fuzzy measure, \overline{m} is fuzzy measure, too. However, if m is a signed fuzzy measure, its conjugate set function \bar{m} need not to be a signed fuzzy measure and this fact will be discussed in the next section.

In the next example, introduced in [12], there is introduced a signed fuzzy measure m and we give an interpretation of the condition (RM) of the revised monotonicity of m in an application.

Example 1 Let X be a set of 2n elements. Let $A, B \subset X$ such that $X = A \cup B$, $A \cap B = \emptyset$ and card(A) = card(B) = n. We define the set function $m : \mathcal{P}(X) \to \mathbb{R}$ by:

$$m(E) = \begin{cases} card (X), & E = A \\ -card (X), & E = B \\ card (A \cap E) - card (B \cap E), & else. \end{cases}$$

m is a signed fuzzy measure.

We discuss the revised monotonicity of m. Same as in the modified version of the example a workshop, given by Murofushi et al. in [7], let us consider the set X as the set of all workers in a workshop, and sets A and B are the sets of good and bad workers in sense of their efficiency, i.e., inefficiency. If we suppose that workers from group A work two times better if they work all together (with nobody else), and workers from B two times worse, and in the other cases "anybody is effective in the proportion to its quantitative membership to the 'good' group A or 'bad' group B". The set function m is used to denote the efficiency of the worker. The interpretation of revised monotonicity is in the assumptions that for disjoint groups E of 'good' and F of 'bad' workers, if they work together, then their productivity is not greater to productivity of E and not less to productivity of F, for groups E and F of 'good'('bad') workers the simultaneous productivity is not less (not greater) to theirs individual productivity. Also, we have m(X) = 0, i.e., the productivity of all workers in the workshop equals to zero.

Let f be a real-valued function on X. We denote $f(x_i) = f_i$ for i = 1, 2, ... nand \mathcal{F} denotes class of all real-valued functions on X. The asymmetric Choquet integral with respect to a set function $m : \mathcal{P}(X) \to \mathbb{R}$ of function $f : X \to \mathbb{R}$ is given by

$$C_m(f) = \sum_{i=1}^{n} (f_{\alpha(i)} - f_{\alpha(i-1)})m(E_{\alpha(i)}),$$

where f admits a comonotone-additive representation $f = \sum_{i=1}^{n} f_{\alpha(i)} \mathbf{1}_{E_{\alpha(i)}}$ and $\alpha = (\alpha(1), \alpha(2), \dots, \alpha(n))$ is a permutation of index set $\{1, 2, \dots, n\}$ such that

$$f_{\alpha(1)} \leq f_{\alpha(2)} \leq \cdots \leq f_{\alpha(n)},$$

 $f_{\alpha(0)} = 0$, sets $E_{\alpha(i)}$ are given by $E_{\alpha(i)} = \{x_{\alpha(i)}, \ldots, x_{\alpha(n)}\}$ and $\mathbf{1}_E$ is characteristic function of set $E, E \subset X$. The asymmetric Choquet integral can be expressed in the terms of the Choquet integrals of non-negative functions f^+

and f^- , the positive and negative part of function f, i.e.

$$C_m(f) = C_m(f^+) - C_{\bar{m}}(f^-), \tag{1}$$

where $f^+ = f \vee 0$ and $f^- = (-f) \vee 0$, and \bar{m} is the conjugate set function of m.

Recall that two functions f and g on X are called *comonotone* [3] if for all $x, x_1 \in X$ we have $f(x) < f(x_1) \Rightarrow g(x) \leq g(x_1)$. The asymmetric Choquet integral is a *comononotone additive* functional on \mathcal{F} , i.e. for all comonotone functions $f, g \in \mathcal{F}$ we have

$$C_m(f+g) = C_m(f) + C_m(g).$$

3 Signed fuzzy measure

In this section we will consider a signed fuzzy measure m with m(X) = 0. We will examine when its conjugate set function \overline{m} is a signed fuzzy measure, too. Note that for a non-negative (non-positive) signed fuzzy measure m, condition m(X) = 0 implies m(E) = 0 for all $E \in P(X)$. In the sequel we suppose that $m : \mathcal{P}(X) \to \mathbb{R}$ is a signed fuzzy measure of non-constant sign. We easily obtain the next lemma by definition of signed fuzzy measure and the condition m(X) = 0.

Lemma 1 Let m be a signed fuzzy measure, m(X) = 0. m(E) and $m(\overline{E})$ are the opposite sign values, i.e.,

$$(\forall E \in \mathcal{P}(X)) \ (m(E) > 0 \iff m(\overline{E}) < 0).$$

Definition 2 We say that a real-valued set function m, $m(\emptyset) = 0$ satisfies an intersection property if for all $E, F \in \mathcal{P}(X), E \cap F \neq \emptyset$ and $E \cup F = X$ we have

$$\begin{array}{lll} a) \ m(E) \geq 0, \ m(F) \geq 0, \ m(E) \lor m(F) > 0 & \Rightarrow & m(E \cap F) \geq m(E) \lor m(F); \\ b) \ m(E) \leq 0, \ m(F) \leq 0, \ m(E) \land m(F) < 0 & \Rightarrow & m(E \cap F) \leq m(E) \land m(F); \\ c) \ m(E) > 0, \ m(F) < 0 & \Rightarrow & m(F) \leq m(E \cap F) \leq m(E). \end{array}$$

We have the next theorem.

Theorem 1 Let m be signed fuzzy measure such that m(X) = 0. m has an intersection property if and only if the conjugate set function \overline{m} of m is a signed fuzzy measure.

Proof. Let m be a signed fuzzy measure with m(X) = 0. (\Longrightarrow) First, we suppose that m has an intersection property. We will prove that \bar{m} is a signed fuzzy measure. (i) Directly by definition of \bar{m} we have $\bar{m}(\emptyset) = 0$. (*ii*) In order to prove condition (RM) a) let $E, F \in \mathcal{P}(X)$ such that $E \cap F = \emptyset$ and $\bar{m}(E) \geq 0, \bar{m}(F) \geq 0, \bar{m}(E) \vee \bar{m}(F) > 0$. We have $\bar{E} \cup \bar{F} = X$ and $m(\bar{E}) \leq 0, m(\bar{F}) \leq 0$ and $m(\bar{E}) \wedge m(\bar{F}) < 0$. (a) If we suppose that $\bar{E} \cap \bar{F} = \emptyset$ then we have $F = \bar{E}$. By Lemma 1. we obtain that the values m(F) and $m(\bar{F})$ are the opposite sign values and it is in contradiction with (a). Therefore, $\bar{E} \cap \bar{F} \neq \emptyset$. By the intersection property of m we have:

$$\begin{split} m(\bar{E} \cap \bar{F}) &\leq m(\bar{E}) \wedge m(\bar{F}) &\iff m(\overline{E \cup F}) \leq m(\bar{E}) \wedge m(\bar{F}) \\ &\iff -\bar{m}(E \cup F) \leq (-\bar{m}(E)) \wedge (-\bar{m}(F)) \\ &\iff \bar{m}(E \cup F) \geq \bar{m}(E) \vee \bar{m}(F). \end{split}$$

Hence, we have that \bar{m} satisfies condition (RM) a). Similarly we obtain that \bar{m} satisfies conditions (RM) b) and c), hence, \bar{m} is a signed fuzzy measure. (\Leftarrow) Let \bar{m} be a signed fuzzy measure, i.e. \bar{m} is a revised monotone set function and $\bar{m}(\emptyset) = 0$. We obtain the claim directly by definition of the intersection property and the above consideration.

Example 2 Let m be a set function defined at the Example 1. m is a signed fuzzy measure with m(X) = 0. Obviously, m has an intersection property. Its conjugate set function $\overline{m} : \mathcal{P}(X) \to \mathbb{R}$ is defined by:

$$\bar{m}(E) = \begin{cases} card (X), & E = A \\ -card (X), & E = B \\ card (B \setminus E) - card (A \setminus E), & else. \end{cases}$$

 \bar{m} is a signed fuzzy measure. Moreover, we have $m = \bar{m}$.

4 Revised monotone functional

In this section we focus on the asymmetric Choquet integral with respect to a signed fuzzy measure. As it is mentioned before, the monotonicity is violated. We will discuss the modification of monotonicity property, the revised monotonicity of asymmetric Choquet integral.

A real valued functional $L, L : \mathcal{F} \to \mathbb{R}$, defined on the class of functions $f : X \to \mathbb{R}$, can be viewed as an extension of a signed fuzzy measure m, so it is reasonable to require that $L(\mathbf{1}_E) = m(E)$, for all $E \in \mathcal{A}$ ($\mathbf{1}_E$ denotes characteristic function of set $E \subset X$). In order to examine the properties of a real valued functional L, under which it can be represented by the asymmetric Choquet integral w.r.t. a signed fuzzy measure, it is useful to consider the concept of comonotone functions.

The functional L is comonotone additive iff

$$L(f+g) = L(f) + L(g)$$

for all comonotone functions $f, g \in \mathcal{F}$. We say that functional L is *positive* homogeneous iff

$$L(af) = aL(f)$$

for all $f \in \mathcal{F}$ and $a \ge 0$.

We introduce a revised monotone functional L defined on \mathcal{F} , see [12].

Definition 3 Let $L : \mathcal{F} \to \mathbb{R}$ be a functional on \mathcal{F} . (i) L is revised monotone if and only if

a)
$$L(f) \ge 0, L(g) \ge 0, L(f) \lor L(g) > 0 \implies L(f+g) \ge L(f) \lor L(g)$$

b) $L(f) \le 0, L(g) \le 0, L(f) \land L(g) < 0 \implies L(f+g) \le L(f) \land L(g)$
c) $L(f) > 0, L(g) < 0 \implies L(g) \le L(f+g) \le L(f)$

for all functions $f, g \in \mathcal{F}$.

(ii) L is comonotone revised monotone if and only if conditions a), b) and c) are satisfied for all comonotone functions $f, g \in \mathcal{F}$.

Note that for a non-negative functional L acting on non-negative functions on X, the revised monotonicity ensures the monotonicity.

Directly by definitions of the comonotone additive and the revised monotone functional L we have the next proposition.

Proposition 1 The asymmetric Choquet integral w.r.t. a signed fuzzy measure $m, C_m : \mathcal{F} \to \mathbb{R}$ is a comonotone revised monotone functional.

Remark 1 Note that any additive functional $L : \mathcal{F} \to \mathbb{R}$ is a revised monotone functional. The Lebesgue integral with respect to a signed measure μ is a revised monotone functional.

We have the next theorem.

Theorem 2 Let L be a real valued, revised monotone, positive homogeneoues and comonotone additive functional on \mathcal{F} . Then there exists a signed fuzzy measure m_L , such that L can be represented by the asymmetric Choquet integral w.r.t. m_L , i.e.,

$$L(f) = C_{m_L}(f).$$

Proof. Let m be a set function m defined by

$$m_L(E) = L(\mathbf{1}_E), \text{ for } E \subseteq X.$$

Observe that for comonotone functions $\mathbf{1}_X$ and $-\mathbf{1}_E$, we have

$$m_L(\bar{E}) = L(\mathbf{1}_{\bar{E}}) = L(\mathbf{1}_X + (-\mathbf{1}_E)) = L(\mathbf{1}_X) + L(-\mathbf{1}_E) = m_L(X) + L(-\mathbf{1}_E)$$

hence

$$L(-\mathbf{1}_E) = -\bar{m}_L(E), \ E \subseteq X.$$

By definition of m_L and revised monotonicity of functional L we have: 1) $m_L(\emptyset) = L(\mathbf{1}_{\emptyset}) = L(0) = 0$ 2) a) for $E, F \in \mathcal{A}, E \cap F = \emptyset$, and $m_L(E) \ge 0, m_L(F) \ge 0, m_L(E) \lor m_L(F) > 0$ we have

$$m_L(E \cup F) = L(\mathbf{1}_{E \cup F}) = L(\mathbf{1}_E + \mathbf{1}_F)$$

$$\geq L(\mathbf{1}_E) \lor L(\mathbf{1}_E) = m_L(E) \lor m_L(F).$$

Analogously, we obtain that m_L satisfies conditions (RM) b) and c), hence m_L is the revised monotone set function, so it is a signed fuzzy measure. Now, we consider $f \in \mathcal{F}$ and its comonotone additive representation $f = f^+ + (-f^-)$, where

$$f^{+} = \sum_{i=1}^{n} (a_{i} - a_{i-1}) \mathbf{1}_{E_{i}},$$

$$-f^{-} = \sum_{i=1}^{n} (b_{i} - b_{i+1}) (-\mathbf{1}_{F_{i}}),$$

 $a_i = f^+_{\alpha(i)}, a_0 = 0, \ b_i = f^-_{\alpha(n+1-i)}, \ b_{n+1} = 0,$

 a_i 's are in non-decreasing, b_i 's are in non-increasing order, α is a permutation, such that $-\infty < f_{\alpha(1)} \le \cdots \le f_{\alpha(n)} < \infty$, $E_i = E_{\alpha(i)}$,

 $F_i = E_1 \setminus E_{\alpha(n+2-i)}, E_{\alpha(i)} = \{x_{\alpha(i)}, \dots, x_{\alpha(n)}\}$ and $E_{\alpha(n+1)} = \emptyset$. For every *i* and *j* the functions $\mathbf{1}_{E_i}$ and $\mathbf{1}_{E_j}$ are commonotone, and by commontone additivity and positive homogeneity of the functional *L*, we have

$$L(f^{+}) = \sum_{i=1}^{n} (a_{i} - a_{i-1})L(\mathbf{1}_{E_{i}})$$
$$= \sum_{i=1}^{n} (a_{i} - a_{i-1})m_{L}(E_{i})$$
$$= C_{m_{L}}(f^{+})$$

and

$$L(-f^{-}) = \sum_{i=1}^{n} (b_{i} - b_{i+1})L(-\mathbf{1}_{F_{i}})$$

$$= -\sum_{i=1}^{n} (b_{i} - b_{i+1})(-L(-\mathbf{1}_{F_{i}}))$$

$$= -\sum_{i=1}^{n} (b_{i} - b_{i+1})\bar{m}_{L}(F_{i})$$

$$= -C_{\bar{m}_{L}}(f^{-}).$$

Therefore by the comonotonicity of functions f^+ and $-f^-$ we obtain that

$$L(f) = L(f^{+} + (-f^{-}))$$

= $L(f^{+}) + L(-f^{-})$
= $C_{m_{L}}(f^{+}) - C_{\bar{m}_{L}}(f^{-})$
= $C_{m_{L}}(f).$

 \square

Acknowledgement The work has been supported by the project MNZŽSS-144012 and the project "Mathematical Models for Decision Making under Uncertain Conditions and Their Applications" supported by Vojvodina Provincial Secretariat for Science and Technological Development.

References

- P. Benvenuti, R. Mesiar i D. Vivona: Monotone Set Functions-Based Integrals. In: E. Pap ed. Handbook of Measure Theory, Ch 33., Elsevier, 2002, 1329-1379.
- [2] A. Chateauneuf, P. Wakker: An Aximatization of Cumulative Prospect Theory for Decision under Risk. J. of Risk and Uncertainty 18 (1999), 137-145.
- [3] D. Denneberg: Non-additive Measure and Integral. Kluwer Academic Publishers, Dordrecht, 1994.
- [4] M. Grabisch: The Symmetric Sugeno Integral. Fuzzy Sets and Systems 139 (2003) 473-490.
- [5] M. Grabisch, H. T. Nguyen, E. A. Walker: Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference. Dordrecht-Boston- London, Kluwer Academic Publishers (1995)
- [6] X. Liu: Hahn decomposition theorem for infinite signed fuzzy measure. Fuzzy Sets and Systems 57, 1993, 189-212.
- [7] T. Murofushi, M. Sugeno and M. Machida: Non-monotonic fuzzy measures and the Choquet integral, Fuzzy Sets and Systems 64, 1994,73-86.
- [8] Y. Narukawa, T. Murofushi: Choquet integral representation and preference. Proc. IPMU'02, Annecy, France, 2002, 747-753.
- [9] Y. Narukawa, T. Murofushi, M. Sugeno: Regular fuzzy measure and representation of comonotonically additive functional. Fuzzy Sets and Systems 112, 2000, 177-186.
- [10] E. Pap: Null-Additive Set Functions. Kluwer Academic Publishers, Dordrecht, 1995.

- [11] E. Pap, ed.: Handbook of Measure Theory. Elsevier, 2002.
- [12] E. Pap, B. Mihailović: Representation of the utility functional by two fuzzy integrals. Proc. IPMU'06, Paris, France, 2006, 1710-1717.
- [13] E. Pap, B. Mihailović: A representation of a comonotone-Q-additive and monotone functional by two Sugeno integrals. Fuzzy Sets and Systems 155 (2005) 77-88.
- [14] D. Schmeidler: Subjective probability and expected utility without additivity. Econometrica 57, 1989, 517-587.
- [15] D. Schmeidler: Integral representation without additivity. Proc. Amer. Math. Soc. 97, 1986, 255-261.
- [16] M. Sugeno, Theory of fuzzy integrals and its applications. PhD thesis, Tokyo Institute of Technology, 1974.
- [17] K. Tanaka, M. Sugeno: A study on subjective evaluation of color printing image. Int. J. Approximate Reasoning 5, 1991, 213-222.
- [18] A. Tverski, D. Kahneman: Advances in prospect theory. Cumulative representation of uncertainty. J. of Risk and Uncertainty 5, 1992, 297-323.