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Abstract: In this paper a modi�cations of Newton's iterative method for solving non-

linear equations based on the Aggregation operators: arithmetic, harmonic, geomet-

ric and �nally the root-power mean has been considered. The convergence properties

of considered methods have been analyzed. The convergence order for simple zeros

is three and linear for multiple zeros. Required computational evaluations per itera-

tion is three. By utilizing some properties of the root-power mean we suggest a most

eÆcient method for �nding the multiple zeros. Illustrative examples are given.
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1 Introduction

We consider a nonlinear equation

f(x) = 0; f : D � R! R (1)

with real zero(root) �. The best know numerical method for solving equation
(1) is the calssical Newton's method given by

xn+1 = xn � f(xn)

f 0(xn)
; n = 0; 1; : : : ; (2)

where x0 is an initial approximation suÆciently close to �.
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The iterative method for solving equation (1) produces the iterative se-
quence fx0; x1; : : :g, such that lim

n!1
xn = �.

The zero � is said to be a simple if f(�) = 0 and f 0(�) 6= 0. If f(�) =
f 0(�) = ::: = f (m�1)(�) = 0 and f (m)(�) 6= 0 for m > 1 then the zero � is of
multiplicity m.

The best know numerical method for solving equation (1) is the classical
Newton's method given by

xn+1 = xn � f(xn)

f 0(xn)
; n = 0; 1; : : : ; (3)

where x0 is an initial approximation suÆciently close to �.

De�nition 1 If the sequence fxng tends to a limit � such that

lim
n!1

jxn+1 � �j
jxn � �j� = C

for some C 6= 0 and � � 1, then the order of convergence of the sequence is
�, and C is know as the asymptotic error constant (AEC).

If � = 1, � = 2 or � = 3, the convergence is said to be linearly, quadratically
or cubic, respectively.

Let en = xn � � be the error in the nth iterate of the method which
produces the sequence fxng. Then, the relation

en+1 = Cepn +O(ep+1
n ) = O(epn)

is called the error equation. The value of p is called the order of convergence
of this method.

The convergence order of the classical Newton's method is quadratically
for simple zeros and linearly for multiple zeros. In recent years in literature
[2, 14, 8] are given some variant of Newton's methods, based on arithmetic,
harmonic and geometric mean. In [9] we suggest the method based on root-
power mean. Accordingly, all this methods is based on aggregation operators.

Aggregation operators like: triangular norms and conorms, uninorms,
copules, weighted arithmetic means, ordered weighted arithmetic means and
compensated operators, make a special class of aggregation operators. All
these operators are detailed considered in di�erent scienti�c papers and mono-
graphs, for example monograph of E. P. Klement, R. Mesiar and E. Pap is
dedicated to triangular norms [7], the ordered weighted averaging operators
are considered in edition of R. R. Yager i J. Kacprzyk [11], while copules are
presented in monograph of R. B. Nelsen [12]. Many results connected with
aggregation operations can be found in edition of T. Calva, G. Mayor and R.
Mesiar [1].

We going to represent a de�nition, some examples and properties of ag-
gregation operators.



De�nition 2 The aggregation operator is a function A :
S
n2N

[0; 1]n !
[0; 1] such that

i) A(x1; :::; xn) � A(y1; :::; yn), whenever xi � yi for all i 2 f1; :::; ng.
ii) A(x) = x for all x 2 [0; 1].

iii) A(0; :::; 0) = 0 and A(1; :::; 1) = 1:

Operators �, as the operator of product, arithmetic mean M , Min,Max

and operator Ac are all aggregation operators.

�(x1; : : : ; xn) =

nY
i=1

xi ; M(x1; : : : ; xn) =
1

n

nX
i=1

xi ;

Min(x1; : : : ; xn) = min(x1; : : : ; xn) ; Max(x1; : : : ; xn) = max(x1; : : : ; xn) ;

Ac(x1; : : : ; xn) = max( 0; min( 1; c+
nX
i=1

(xi � c)));

where the operator Ac :
S
n2N[0; 1]

n ! [0; 1] is de�ned for all c 2 (0; 1) .

The weakest aggregation operator, in designation Aw, and the strongest
aggregation operator As, are given by following:

(8 n � 2) (x1; : : : ; xn) 6= (1; : : : ; 1) : Aw(x1; : : : ; xn) = 0
(8 n � 2) (x1; : : : ; xn) 6= (0; : : : ; 0) : As(x1; : : : ; xn) = 1:

Aggregation operators between each other can be compared like functions
with n-variables. For any aggregation operator A is satis�ed:

Aw � A � As:

Also, the following is satis�ed:

Aw � � �Min �M �Max � As:

Example 1 Aggregation operator: W4 :
S
n2N [0; 1]

n ! [0; 1] de�ned by

W4(x1 ; x2; : : : ; xn) =

nX
i=1

winxi ;

is the so called weighted arithmetic operator associated with weighted triangle
4.

Weighted arithmetic means are continuous, idempotent, linear, additive
and self-dual aggregation operators.



Example 2 Let f : [0; 1]! [�1;+1] continuous and stricly monoton func-
tion. The aggregation operator Mf :

S
n2N

[0; 1]n ! [0; 1], which is given by

Mf (x1; x2; : : : ; xn) = f�1
� 1
n

nX
i=1

f(xi)
�
;

is called quasi-arithmetic mean.

The class of quasi-arithmetic means, root-power operatorsMp :
S
n2N

[0; 1]n

! [0; 1] ; p 2 (�1; 0)[(0;+1) is obtained by applying the function fp : [0; 1]
! [�1;+1] ; fp(x) = xp such as:

Mp(x1; x2; : : : ; xn) =
� 1
n

nX
i=1

x
p
i

� 1
p

:

Marginal members of these classes are M0 = G = Mlog x, which is the
geometric mean, while M1 =Max and M�1 =Min which are not in class
of quasi-arithmetic means.

2 De�nition of the methods

In following, we give the short description of methods based on aggregation
operators.

At �rst we consider the method proposed by Traub(1964) [10] and redis-
covered by Weerakoon et al.(2000) in [14]:

xn+1 = xn � 2f(xn)

f 0(xn) + f 0(vn+1)
;

where vn+1 = xn � f(xn)

f 0(xn)
; n = 0; 1; : : : ;

(4)

which is, in contrast to Newton's method (3), instead of f 0(xn) using arith-
metic mean of f 0(xn) and f

0(vn+1). Therefore, it call arithmetic mean New-
ton's method (AM).

If we use harmonic mean instead of the arithmetic mean in (4), we obtain
the harmonic mean Newton's method (HM):

xn+1 = xn � f(xn)(f
0(xn) + f 0(vn+1))

2f 0(xn)f 0(vn+1)
;

where vn+1 = xn � f(xn)

f 0(xn)
; n = 0; 1; : : :

(5)

proposed by Traub(1964) and rediscovered by �Ozban(2004) in [2].



Leading by such admission Luki�c et al.(2005) in [8] proposed the following
scheme

xn+1 = xn � f(xn)

sign(f 0(x0))
p
f 0(xn)f 0(vn+1)

;

where vn+1 = xn � f(xn)

f 0(xn)
; n = 0; 1; : : :

(6)

which we call geometric mean Newton's method (GM).
The root-power mean Mp for values a and b is de�ned by

Mp(a; b) =

�
ap + bp

2

� 1
p

;

where p is a real number, p 6= 0. The operator Mp add up to the arithmetic
and harmonic mean when p = 1 and p = �1 respectively. Similarly, Mp add

up to the geometric mean when p! 0, by equation lim
p!0

p

q
ap+bp

2 =
p
ab:

If we use the root-power mean instead of arithmetic mean in (4), we get
the new scheme

xn+1 = xn � f(xn)

sign(f 0(x0)) �Mp(jf 0(xn)j; jf 0(vn+1)j) ;

where vn+1 = xn � f(xn)

f 0(xn)
; p 6= 0; n = 0; 1; : : :

(7)

which we call root-power mean Newton's method (RPM), proposed by Ralevi�c
et. al. in [9]. It is easy to see that the above mentioned methods can
be obtained as a special cases of the root-power mean method, especially
for p = 1, p = �1 and p ! 0 we obtain the AM, HM and GM methods,
respectively. Hence, it is clear that it is suÆcient to consider the convergence
behavior of the root-power mean method.

3 Analysis of convergence

The next theorem ensure the third order convergence of the RPM method for
all p 6= 0 in case when we approximate a simple zero.

Theorem 1 [9] Let f : D � R ! R for an open interval D. Assume that f
has �rst, second and third derivatives on the interval D and f has a simple
root in � 2 D. If x0 is suÆciently close to �, then the RPM method, de�ned
by (7), converges cubically and satis�es the following error equation:

en+1 =
1

2

�
(p+ 1)c22 + c3

�
e3n +O(e4n); (8)

where en = xn � � and constants cj =
f (j)(�)
j! f 0(�) for j = 1; 2; 3; : : :.



It is worth noting that the rate of convergence can be improve by an

appropriate choice of parameter p, popt = �
�
2f 000(�)f 0(�)
3(f 00(�))2 + 1

�
. For p = popt

the convergence order is at least four. This is only (for now) theoretical
possibility, because popt depends on the zero �.

In the next theorem we give the error equation of RPM method for mul-
tiple zeros.

Theorem 2 Let f : D � R ! R, where D is an open interval. Assume
that f is suÆciently many times di�erentiable on the interval D and f has a
multiple zero of multiplicity m (m > 1) in � 2 D. If x0 is suÆciently close to
�, then the root-power mean Newton's method (7) converges to � and satis�es
the following error equation:

en+1 =

0
@1� 2

1
p

�
1 + (m�1m )(m�1)p

�� 1
p

m

1
A en +O(e2n); (9)

where en = xn � �.

PROOF. Let � be a zero of multiplicity m (i.e. f(�) = f 0(�) = f 00(�) =
: : : = f (m�1)(�) = 0 and f (m)(�) 6= 0).
By Taylor expansion of f(xn) about � we get

f(xn) = f(�) + f 0(�)en +
1
2!f

00(�)e2n + :::

+ 1
m!f

(m)(�)emn + 1
(m+1)!f

(m+1)(�)em+1
n + 1

(m+2)!f
(m+2)(�)em+2

n

+O(em+3
n )

= 1
m!f

(m)(�)emn + 1
(m+1)!f

(m+1)(�)em+1
n + 1

(m+2)!f
(m+2)(�)em+2

n

+O(em+3
n )

= f (m)(�)
m! [emn + f (m+1)(�)

(m+1)fm(�)e
m+1
n + f (m+2)(�)

(m+2)(m+1)fm(�)e
m+2
n +O(em+3

n )];

= f (m)(�)
m! [emn + dm+1e

m+1
n + dm+2e

m+2
n +O(em+3

n )];

(10)

where en = xn � � and dm+i =
f (m+i)(�)=(m+i)!

f (m)(�)=m!
.



Similarly, we obtain

f 0(xn) = f 0(�) + f 00(�)en +
1
2!f

000(�)e2n + :::

+ 1
m!f

(k+1)(�)emn + 1
(m+1)!f

(m+2)(�)em+1
n + 1

(m+2)!f
(m+3)(�)em+2

n

+O(em+3
n )

= 1
(m�1)!f

(m)(�)em�1n + 1
m!f

(m+1)(�)emn + 1
(m+1)!f

(m+2)(�)em+1
n

+O(em+2
n )

= f (m)(�)
m! [mem�1n + (m+ 1)dm+1e

m
n + (m+ 2)dm+2e

m+1
n +O(em+2

n )]

= f (m)(�)
(m�1)! e

m�1
n [1 + m+1

m dm+1en +
m+2
m dm+2e

2
n +O(e3n)]

(11)
Dividing (10) by (11), we get

f(xn)

f 0(xn)
= 1

men
�
1 + dm+1en + dm+2e

2
n +O(e3n)

�

�
�
1 + m+1

k dm+1en +
m+2
m dm+2e

2
n +O(e3n)

��1
= en

m

�
1 + dm+1en + dm+2e

2
n +O(e3n)

�h
1� (m+1

m dm+1en

+m+2
m dm+2e

2
n +O(e3n)) + (m+1

m dm+1en +O(e2n)
2
i

= en
m

�
1 + dm+1en + dm+2e

2
n +O(e3n)

�h
1� m+1

m dm+1en +O(e2n)
i

= en
m

h
1� 1

mdm+1en +O(e2n)
i

and
vn+1 � �= en � f(xn)

f 0(xn)

= m�1
m en +

1
m2 dm+1e

2
n +O(e3n):

(12)

By (12) and expanding f 0(vn+1) about � we obtain

f 0(vn+1) = f 0(�) + f 00(�)(vn+1 � �) + 1
2!f

000(�)(vn+1 � �)2

+ 1
3!f

(4)(�)(vn+1 � �)3 + :::

= 1
(m�1)!f

(m)(�)(vn+1 � �)m�1

[1 + m+1
m dm+1(vn+1 � �) + m+2

m dk+2(vn+1 � �)2 + :::]

= f (m)(�)
(m�1)! (

m�1
m )m�1em�1n [1 +O(en)]

(13)



From (11) we get

�
f 0(xn)

�p
=
� f (m)(�)
(m�1)! e

m�1
n )p

�
1 + p

�
m+1
m dm+1en +

m+2
m dm+2e

2
n +O(e3n)

�

+p(p�1)
2

�
m+1
m dm+1en +

m+2
m dm+2e

2
n +O(e3n)

�2
+O(e3n)

�
=
� f (m)(�)
(m�1)! e

m�1
n )p

�
1 +O(en)

�
;

(14)
and similarly from (13) we get

�
f 0(vn+1)

�p
=
� f (m)(�)
(m�1)! (

m�1
m )m�1em�1n

�p�
1 +O(en)

�
: (15)

It is easy to show that f 0(xn)f
0(vn+1) > 0 holds for n = 0; 1; 2:::. Without

loss of generality we suppose that f 0(xn) > 0 and f 0(vn+1) > 0. Replacing
(14) and (15), we obtain

Mp(jf 0(xn)j; jf 0(vn+1)j)�1 =
� (f 0(xn))p+(f 0(vn+1))

p

2 )�
1
p

=
� f (m)(�)
(m�1)! e

m�1
n )�1

�
1
2 ((

m�1
m )(m�1)p + 1) +O(en)

�� 1
p

=
� f (m)(�)
(m�1)! e

m�1
n )�1��

1
p

�
1 +O(en)

�� 1
p

=
� f (m)(�)
(m�1)! e

m�1
n )�1��

1
p

�
1 +O(en)

�
;

(16)
where

� =
1

2

�
(
m� 1

m
)(m�1)p + 1

�
:

Hence, from equations (10) and (16), we have that

f(xn)

sign(f 0(x0))Mp(jf 0(xn)j; jf 0(vn+1)j) =
f (m)(�)

m! emn [1 +O(en)]

�� f (m)(�)
(m�1)! e

m�1
n )�1��

1
p � �1 +O(en)

�
= 1

m�
1
p

en
�
1 +O(en)

�
:

Repleacing this in (7) we obtain

xn+1 = xn � 1

m�
1
p

en
�
1 +O(en)

�

or

en+1 =

�
1� 1

m�
1
p

�
en +O(e2n);

which shows the linear convergence of the root-power mean Newton's method
for multiple roots. �

In following we consider the error equation (9). The optimal value of pa-
rameter p is such a value for which the asymptotic error constant in equation



(9), 1� 2
1
p (1+(m�1

m
)(m�1)p)

�
1
p

m is minimal. Function

�(p) = 1� 2
1
p

�
1 + (m�1m )(m�1)p

�� 1
p

m

is positive and increasing, therefore the minimal value is achieved when p

tends to �1,

lim
p!�1

�(p) = 1� (m�1m )1�m

m
:

Root-power mean, Mp(a; b) brings to Min(a; b) in case when p ! �1 .
Therefore, instead of operator Mp in RPM method (7) we can use operator
Min. It is easy to see that Min(jf 0(xn)j; jf 0(vn+1)j) = jf 0(vn+1)j holds in
a case when we approximate multiple zeros. By this way, we coming to the
following method

xn+1 = xn � f(xn)

f 0(vn+1)
; where

vn+1 = xn � f(xn)

f 0(xn)
; n = 0; 1; : : :

(17)

which we call minimum Newton's method (MM). From the class of RPM
methods this method is the most suitable for approximation multiple zeros.
From the theorem 2 we can see that all of RPM methods are at least linearly
convergent in case of multiple zeros. In table 1 we compare asymptotic error
constant of above mentioned RPM methods with Newton's method.

Table 1.

Mult. AEC

NM AM HM GM MM

2 0.50 0.33 0.25 0.29 0.00

3 0.67 0.54 0.46 0.50 0.25

4 0.75 0.65 0.58 0.61 0.41

5 0.80 0.72 0.66 0.69 0.51

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

m 1�
1
m

1�
2

(1+(m�1
m

)m�1)m
1�

1+(m�1
m

)1�m

2m
1�

(m�1
m

)
1�m
2

m
1�

(m�1
m

)1�m

m

From table 1 we can see that AEC for MMmethod, in case of double zeros,
is equal to 0. That means the convergence in such a case is quadratically. In
every cases MM method has the minimal AEC.

Numerical Example. Let f(x) = x2 sin(4x). It is obviously that � = 0 is
a zero of multiplicity three. We solve the equation f(x) = 0 by RPM method
using di�erent values of the parameter p. The initial approximation, x0 = 0:3
and the stopping criterion is jxn+1 � �j+ jf(xn+1)j < 10�12.
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Figure 1.

On �gure 1 we show the dependence of iteration number on di�erent chose
of parameter p. Decreasing of p implicates decreasing of the iteration number,
which is in accordance with above presented theoretical reason, obtained by
analysis of the error equation in Theorem 2.

4 Conclusion

The main characteristics of the methods based on aggregation operators,
presented in this paper are following: the least third order of convergence
for the simple zeros and least linear convergence for the multiple zeros; there
exist such value of p = popt, for which value the order of convergence of the
RPM method is at least 4; using three functional evaluations in each iteration
step; it does not require the computation of the second or the higher order
derivatives.

Also, from our analysis, we can conclude that in case when we approximate
a multiple zero, it is most suitable to use the MM method, because it has the
minimal asymptotic error constant and it is a simple algorithm.
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