
SISY 2006 • 4th Serbian-Hungarian Joint Symposium on Intelligent Systems 

 

473

Viruses using .NET Framework 

Zsombor Zsolt Kurdi 
John von Neumann Faculty of Informatics, Budapest Tech 
Bécsi út 96/B, H-1034 Budapest, Hungary 
kurdi.zsombor@nik.bmf.hu 

Abstract: In our age, programming languages and development tools advance to make 
programmers' work much easier. The tools can assemble programs written different 
programming languages, they can build executables can be run independently of the 
operating system. This simplification of software development causes the simplification of 
writing programs with the prepense of malice (e.g. viruses). So developers of these tools 
have to care about the security. Farther this virtual equivalency of computers – and the 
spreading of Internet – make easier to viruses infecting a computer. 

Keywords: .NET Framework, MSIL, Virus, Malware 

1 Introduction 

Viruses are small softwares attach themselves to other files (infection) and cause 
damage to the computer (this is their main goal) when a user executes the infected 
file. The concrete steps of the infection procedure depend on a lot of properties of 
the local environment (e.g. operating system, ‘virus strain’, file's type would be 
infected etc.). 

Penetration of .NET Framework (and other development tools for writing 
platform-independent programs) causes a great simplification in virus 
development too. For example the viruses have not care about the type of 
operating system during the infection – and damaging – which is a great 
advantage for them. 

This article is organized as follows: Section 2 gives an outline about malicious 
softwares (short description, history, types etc.), Section 3 treats of the .NET 
framework, it's usability and its similarity to Java Virtual Machine. The main 
section (Section 4) covers an introduction and analysis of viruses based on the 
services of the .NET framework, which is followed by the conclusions (Section 5). 



Zs. Zs. Kurdi • Viruses using .NET Framework 

 
474 

2 Viruses and Other Malicious Softwares 

A computer virus (or simply virus) is a self-replicating computer program that 
spreads by inserting copies of itself into other executable code or documents 
(definition from wikipedia.org). These small pieces of programs were named 
viruses because they behave very similar to biological viruses. The attaching 
procedure, when a virus copies itself to an executable is called ‘infection’, and the 
infected executable is the ‘host’. 

The first computer virus was written in the early 1970s or even in the end of 
1960s. But the term ‘computer virus’ was formally defined by Fred Cohen in 
1983. Actually the number of malicious programs started increasing in this period. 
The most self-replicating programs were written with scientific view. Since that 
time this growing has accelerated and the goals of writing such a program has 
been changed ([1]). 

Viruses are not the only malefic programs in the info-space, but they are the most 
well-known ones. There are a lot of other malicious softwares (malwares). The 
common property of these programs is to infiltrate or damage a computer system, 
without the owner’s consent. A malware can be 

– a virus, 

– a worm, 

– a trojan horse, 

– a spyware, 

– an adware, 

– any other program written with the idea of causing damage. 

A worm is a special type of virus which travels over network (e.g. Internet) to find 
and infect files on other computers. Only viruses and worms are self-replicating 
programs from the enumeration above. The other malwares uses the credulousness 
of users to the reproduction (or the infection of the computer). 

Spyware and adware programs are some special kinds of malware. They were 
created for commercial purposes. A spyware gathers information about computer 
users; an adware shows annoying advertisements to them. Since 2003 these are the 
most common types of malware. 

Hereafter this article focuses on viruses (and partially on worms). Viruses can be 
sorted in many ways. There are viruses which uses existing executables (program 
virus) for running. Such a virus attaches itself to an executable file and it runs 
(infects and causes damage) when a user executes the host file. Other viruses 
overwrite the boot sector or the master boot sector of the disks (boot virus). These 
viruses are load into memory if the computer tries to read the disk while it is 



SISY 2006 • 4th Serbian-Hungarian Joint Symposium on Intelligent Systems 

 

475

booting. Some viruses combine boot and program viruses (multipartite virus) or 
tries to avoid virus-detection using certain techniques (polymorphic and stealth 
viruses). Finally a new type of viruses is macro viruses that infect the macros 
within a document or template. 

This high number of viruses and virus types calls for solutions for defend 
computer from the infection of any virus. There are a lot of commercial softwares 
(anti-virus programs) more or less efficient tools against malwares. The contest 
between developers of viruses and anti-virus softwares is a never-ending war 
which can be won by nobody. 

Because softwares are often designed with security features (e. g. operating 
system, browsers, e-mail softwares etc.), software design and development 
methods and strategies have to prevent as many security holes in the software as 
possible. Programs should have no vulnerabilities which can be used by viruses. 

3 The .NET Framework 

Diversity is part of all segment of informatics. The hardware elements used for 
compiling computers can be very different and they can have unique characteristic 
depend on the manufacturer. One of the main goals of operating systems is to hide 
these dissimilarities and provide a uniform, hardware-independent interface for 
computer users (see Figure 1). 

This virtual unification of the hardware-granted functions makes computer more 
usable, and software development will be much easier. Operating systems (their 
count is essentially less than the count of hardware elements) define virtual 
hardware units with generic properties and functions. They use the physical 
hardware or software emulation to grant these properties and functions. So people 
have to learn how they can avail themselves of the functions of the chosen 
operating system (they have not concern themselves about the functions of the 
hardware-layer). 

Besides the operating systems, the most programming languages open the door to 
write so-called platform-independent programs (softwares uses resources available 
in every operating system). Up to now the programmers have had to write the 
program (source code) once and it has had to be compiled as many as the number 
of operating systems have the users (in each cases the result of this procedure is 
almost the same sequence of processor-instruments, but the executable file's 
format is different certainly). 

For a long time past, programmers' wish is to make this procedure easier. They 
would like to write and compile the source code only once. This problem has been 
being solved far in the past. Interpreted programming languages are the solution. 



Zs. Zs. Kurdi • Viruses using .NET Framework 

 
476 

In this case, the source code is the program which is executed by another program 
(interpreter). These codes can be executed with each operating system has the 
required interpreter. 

But the interpreted programs have disadvantages: the executing procedure is too 
slow and the source code's syntax can not be checked fully. Sun Microsystems 
Inc. has given a solution for this. The programmers of Sun have created the Java 
programming language which integrate interpretation and compilation during 
software development and execution. After the Java source code has been written, 
it has to be compiled (the result is a sequence of Java Byte Code), so the syntax 
and semantics of the source code can be checked, and the code can be made more 
efficient. The Java Byte Code constitutes the instrument set of the Java Virtual 
Machine (JVM), so the result of compilation can be interpreted by a JVM. 
Because Sun has published JVMs for the most common operating systems, the 
once written and compiled program can be executed by all the computers run 
JVM. 

Programmers of Microsoft solved the problem otherwise. They created the 
Microsoft .NET Framework. This solution is very similar to Java, JVM and Java 
Byte Code, but it is much more. It exploits the hidden power of JVM, and 
eliminates its weaknesses. The .NET Framework is development and execution 
environment for several programming languages (C\#, C++, Visual Basic etc.), so 
software component written in different programming languages can be assembled 
by .NET Framework. Moreover, the compiled source would not be interpreted; it 
will be compiled to native code before execution using the Just-In-Time (JIT) 
compiling strategy. The first compilation produces a code written using Microsoft 
Intermediate Language (MSIL). 

The .NET Framework – as the Java environment – constitutes a new layer – over 
the operating system – which hides the dissimilarities of various operating systems 
(this architecture is shown on Figure 1). 

 
Figure 1 

Layered Architecture 



SISY 2006 • 4th Serbian-Hungarian Joint Symposium on Intelligent Systems 

 

477

4 .NET Viruses 

Executable files written for .NET Framework can be infected by viruses as other 
executables. In this case there are two ways for the infection: malicious code can 
be added to the file contains MSIL code-sequence or to the native code after the 
JIT compilation (see Figure 2). 

 
Figure 2 

Infection types 

If the virus infects an MSIL file, the infection will be platform independent too. 
The infected PE (portable executable) file can execute – without any changes – by 
other operating systems, so the infection can be spread very fast. While the 
infection of native code is ‘localized’ for the operating system using the same 
executable format. 

Because lot of web services use the .NET architecture, they create new infection 
mechanisms unwittingly or almost unwittingly ([2]). Anti-virus professionals' 
opinion is the security model of .NET Framework can stop several attacks of 
viruses, but not all. There are other possible ways to take advantages of .NET 
services. Still the malwares and .NET Framework's ‘collaboration’ is an 
unanswered question. 

There are several viruses using the .NET Framework in the info-space. The firs 
one was ‘Donut’ (also known as ‘dotNET’) which was exposed in 2002. It is a 
native executable targets PE files written for .NET Framework. It overwrites the 
initial jump to the _CorExeMain() function (located in mscoree.dll) with a jump to 
the end of the file where the malicious code is located. (This process is similar to 
the standard infection of native executables.) The virus also injects short MSIL 
code into the PE file for display a message that akes the fact of infection known to 
the user (source: virus escription from Symantec). 

The basic form of Donut is a native executable which is an e-mail irus (it uses the 
address book in Microsoft Outlook to spread via -mails sent without the user's will 



Zs. Zs. Kurdi • Viruses using .NET Framework 

 
478 

([3]). If this file is executed on a local computer, it infects the executables in the 
same folder and up to 20 parent folder. 

However Donut is defined as a low-risk virus, it is a good example, that the viral 
infection of .NET executables are possible indeed. 

Conclusions 

The efforts make the program development easier faster and comfortable draw 
down the simply way to develop viruses and other malwares. So developers of 
programming frameworks (e.g. .NET) and creators of programming languages 
interpreted by virtual machines (e.g. Java) have to care the security leaks and 
features of these development tools through all ages. 

The popularity of Internet and the new computing model – based on .NET 
Framework – used for web application creates fresh vulnerabilities can be exploit 
by virus (and malware) writers day-by-day. Donut is an example that good 
security conception (as the security of .NET Framework) can reduce this 
vulnerabilities, but they can be never completely removed. 

References 

[1] B. Krebs: A Short History of Computer Viruses and Attacks, The 
Washington Post, 14th February 2003 

[2] J. Layden: .NET may Lead to Fewer Viruses, The Register, 28th September 
2001 

[3] J. Layden: C\# Virus Pitched against .NET, The Register, 4th March 2002 

[4] Microsoft Knowledge Base: Information About the .NET W32.Donut 
Virus, Q316287, 8th July 2005 


