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Abstract: It is known that the sum of the squares of the reciprocals, of positive integer 

numbers, is finite. It can be asked… What is the smallest area rectangle into which all the 

squares of sides of length the reciprocals of the positive integers can be packed?                         

In connection with the investigations related to mathability and to applications of computer 

assisted methods, for considering mathematical problems, an improvement for the best 

known 𝜖 is presented, herein. The GNU program, Octave, was used for the calculations. 
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1 Introduction 

Mathability refers to a branch of cognitive infocommunications that investigates 

any combination of artificial and natural cognitive capabilities, relevant to 

mathematics, including a wide spectrum of areas ranging from low-level arithmetic 

operations, to high-level symbolic reasoning. The concept of Cognitive 

Infocommunications (CogInfoCom) was introduced in the paper [1]. Some of its 

further general properties were described in the papers [2] and [3] and in the book 

[4]. The educational aspects of CogInfoCom and mathability were investigated, 

among others, in [5-12] while other CogInfoCom related applications of cognitive 

capabilities are presented in [13-20]. 

Questions related to mathability and to computer based methods for investigations 

of mathematical problems have been studied by several authors in recent years [21-

25]. T work has contributed to these investigations. A computer assisted method for 

a packing of squares, of sides of length 
1

2
,

1

3
,

1

4
, … is presented. 

The paper [26], motivated me to present a computer assisted method for a problem 

of Meir and Moser [27]. The calculation is performed in Octave, available at 

https://www.gnu.org/software/octave/download. 
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2 The Problem 

It is said the squares 𝑆1, 𝑆2, 𝑆3, … can be packed into a rectangle if it is possible to 

apply translations and rotations to the sets 𝑆𝑛 so that the resulting translated and 

rotated squares are contained in the rectangle and have mutually disjoint interiors. 

Meir and Moser [27], in 1968, originally noted that since: 

∑
1

𝑖2
∞
𝑖=2 =

π2

6
− 1 (1) 

it is reasonable to ask whether the set of squares of sides of length 
1

2
,

1

3
,

1

4
, …, which 

is called the reciprocal squares, can be packed into a rectangle of area 
𝜋2

6
− 1. 

Failing that, find the smallest 𝜖 such that the reciprocal squares can be packed into 

a rectangle 𝑅 of area 
𝜋2

6
− 1 + 𝜖. This question can be found in e.g. [28]. 

Meir and Moser [27] in 1968 showed that the smallest square containing the 

reciprocal squares is the square of side 
5

6
 which shows that 𝜖 <

1

205
. Jennings [29] in 

1994 gave a rectangle of dimensions 
47

60
×

5

6
  containing the reciprocal squares which 

shows that 𝜖 <
1

127
  

Ball [30] in 1996 gave a rectangle of dimensions 
629

1 000
×

31

30
 containing the reciprocal 

squares which shows that 𝜖 <
1

198
 

Paulhus [26] in 1997 gave a rectangle of dimensions: 

0.5 × (2 (
π2

6
− 1) + 1.606 553 066 ⋅ 10−9) (2) 

containing the reciprocal squares which shows that: 

𝜖 <
1

1 244 918 662
= 8.032 653 301 … ⋅ 10−10 (3) 

The author [31] in 2018 has found a mistake in the proof of Paulhus. Grzegorek and 

Januszewski [32] in 2019 filled this gap in the proof of Paulhus. In this paper a new 

estimate for 𝜖 is presented. 

3 Construction 

Theorem 1 

The rectangle of dimensions 0.5 × (2 (
π2

6
− 1) + 1.363 813 307 2 ⋅ 10−9) 

contains the reciprocal squares which shows that 𝜖 <  6.819 066 536 ⋅ 10−10 

From the following construction it comes the proof of the theorem. 



Acta Polytechnica Hungarica Vol. 19, No. 1, 2022 

‒ 53 ‒ 

The square of size 
1

𝑖
 is referred by (the square) 𝑖. In this paper the width of a 

rectangle will always refer to the shorter side and the length will always refer to the 

longer side of the rectangle. Let 𝑅 be the rectangle of dimensions 
1

2
×  2 (

π2

6
− 1) in 

which the squares are packed first. It is assumed, that the width of 𝑅 is horizontal. 

Let l0 = 0.000 019 03. Let 𝑅′ be the square of side length 𝑙0. 

Let 𝐴 = 1 622 971 324, 𝐵 = 1 648 721 271, 𝐶 = 2 675 827 341, 𝐷 =

2 718 281 828, 𝐸 = 2 761 408 695. The numbers 𝐴, 𝐵, 𝐶, 𝐷 and 𝐸 comes from 

[26]. Let 𝑛0 = 𝐸 + 1, 𝑛𝑖 = ⌊𝑛𝑖−1(1 + 𝑙0)⌋ for 𝑖 ≥  1 where ⌊. ⌋ is the floor function 

and 𝑛18
′ = 2 762 386 911. Observe the squares from 𝑛𝑖−1 to 𝑛𝑖 − 1 fit in a row of 

𝑅′. Let 𝐴1 = 1 016 225 800, 𝐴2 = 1 000 000 440, 𝐶′ = 2 633 103 139 and 

𝐶0 = 2 674 879 766, …, 𝐶18 = 2 675 796 170 so that 

∑
1

𝑖

𝐶𝑗+1−1

𝑖=𝐶𝑗
< 𝑙0 ≤ ∑

1

𝑖

𝐶𝑗+1

𝑖=𝐶𝑗
  for j = 0, … ,18 (4) 

The numbers 𝐶1, … , 𝐶18 are calculated with the help of Octave and Lemma 1. 

Lemma 1. The following is true: 

 (5) 

where 𝑛 and 𝑚 are positive integers and 𝑛 ≠ 1 

Proof of Lemma 1. After using the lower and upper sums of the function 

𝑥 ↦
1

𝑥
 the estimates are trivial. 

By Lemma 1, it is true: 

 (6) 

 
The numerical estimations based on the Lemma 1. The following two short Octave 

retval functions help the calculations: 

function retval = distU (k,v) 

  retval = log(v/(k-1)); 

endfunction 

function retval = distL (k,v) 

  retval = log((v+1)/k); 

endfunction. 

ln
𝑛 + 𝑚 + 1

𝑛
<

1

𝑛
+ ⋯ +

1

𝑛 + 𝑚
< ln

𝑛 + 𝑚

𝑛 − 1
 

1

𝑛
+ ⋯ +

1

𝑛 + 𝑚
≈

ln
𝑛 + 𝑚 + 1

𝑛
+ ln

𝑛 + 𝑚
𝑛 − 1

2
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By Lemma 1, the function distL(k,v) returns an lower bound of the sum 
1

𝑘
+ ⋯ +

1

𝑣
 

and the function distU(k,v) returns an upper bound of the sum 
1

𝑘
+ ⋯ +

1

𝑣
. 

The following is used: 

Lemma 2. The squares 𝐶0, 𝐶0 + 1, …, 𝐶, 𝑛18
′ ,  𝑛18

′ + 1, …, 𝑛100001 − 1, 

𝑛100 251, 𝑛100 251 + 1, … can be packed in 𝑅′. 

Proof of Lemma 2. The squares from 𝐶0 to 𝐶 are packed in rows of length no 

greater than 𝑙0 in the square 𝑅′. 

If 1 ≤  𝑖 ≤ 18, then in the 𝑖th row the squares go from 𝐶𝑖−1 to 𝐶𝑖 − 1 (Figure 1). 

Observe, the squares from 𝐶𝑖−1 to 𝐶𝑖−1 fit in the 𝑖th row. 

 

Figure 1 

The 𝑖th row in 𝑅′ (1 ≤  𝑖 ≤ 19) 

By Lemma 1 and Octave, in the 19th row the squares go from 𝐶18 to 𝐶 and from 

𝑛18
′  to 𝑛19 − 1. If 20 ≤  𝑖 ≤ 100 001, then in the 𝑖th row the squares go from 𝑛𝑖−1 

to 𝑛𝑖 − 1. Observe, the squares from 𝑛𝑖−1 to 𝑛𝑖 − 1 fit in the 𝑖th row. If 100 002 ≤
 𝑖, then in the 𝑖th row the squares go from 𝑛𝑖+249 to 𝑛𝑖+250 − 1 (Figure 2). Observe, 

the squares from 𝑛𝑖+249 to 𝑛𝑖+250 − 1 fit in the 𝑖th row. 
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Figure 2 

The 𝑖th row in 𝑅′ (100 000 ≤  𝑖 ≤ 100 003) 

Now: 

 (7) 

for 𝑖 > 18, Thus: 

∑
1

𝐶𝑖−1

 

19

𝑖=1

+ ∑
1

𝑛𝑖−1

 

100 001

𝑖=20

+ ∑
1

𝑛𝑖+249

 

∞

𝑖=100 002

 

<  0.000 000 007 101 90 … + ∑
1

𝑛18 (1 + l0 −
1

n18
)

𝑖−19
 

100 001

𝑖=20

  

… + ∑
1

𝑛18 (1 + l0 −
1

n18
)

𝑖+231
 

∞

𝑖=100 002

 

=  0.000 000 007 101 90 … +
1

𝑛18 (1 + l0 −
1

n18
)

∑
1

(1 + l0 −
1

n18
)

𝑖
 

99 981

𝑖=0

 

𝑛𝑖 = ⌊𝑛𝑖−1(1 + 𝑙0)⌋ > 𝑛𝑖−1 (1 + 𝑙0 −
1

𝑛𝑖−1

) 

> 𝑛𝑖−2 (1 + 𝑙0 −
1

𝑛𝑖−1

) (1 + 𝑙0 −
1

𝑛𝑖−2

) 

> 𝑛𝑖−2 (1 + 𝑙0 −
1

𝑛𝑖−2

)
2

> ⋯ > 𝑛18 (1 + 𝑙0 −
1

𝑛18

)
𝑖−18
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+
1

𝑛18 (1 + l0 −
1

n18
)

100 233 ∑
1

(1 + l0 −
1

n18
)

𝑖
 

∞

𝑖=0

 

=  0.000 000 007 101 90 … +
1

𝑛18 (1 + l0 −
1

n18
)

1 −
1

(1 + l0 −
1

n18
)

99 982

1 −
1

1 + l0 −
1

n18

 

 (8) 

Octave was used to the numerical calculations. Thus the squares fit in 𝑅′, which is 

the statement of the lemma. 

Proof of Theorem 1. It is assumed that the squares up to 109 are packed in 𝑅 as in 

[26]. By [26], there is a rectangle 𝑅𝐿 of length and width at most 𝑙0, which has no 

common interior point with the squares up to 109. By Lemma 2, it is necessary to 

find a place to pack the squares from 109 + 1 to 𝐶0 − 1, from 𝐶 + 1 to 𝑛18
′ − 1 and 

from 𝑛100 001 to 𝑛100 251 − 1. 

Let the squares from 109 + 1 to 𝐶0 − 1 and from 𝐶 + 1 to 𝑛18
′ − 1 be packed into 

a rectangle 𝑅𝑁 of length 
1

2
 as in Figure 3. By [26], the squares from 109 + 1 to 𝐵 

and from 𝐶 + 1 to 𝐷 can be arranged as in Figure 3. By Lemma 1, 
1

𝐶′ + ⋯ +
1

𝐶0−1
<

1

𝐴
+ ⋯ +

1

𝐵
. 

 

Figure 3 

The squares in 𝑅𝑁 

It is shown that the highest horizontal edge belongs to the square 𝐶′ − 1 thus, the 

width of the rectangle 𝑅_𝑁 is 
1

𝐴1
+

1

𝐶′−1
=  1.363 813 307 18 … ⋅ 10−9. 

First, it is shown that the highest horizontal edge belongs to the square 𝐶′ − 1 among 

the squares 𝐵 + 1, …, 𝐶′ − 1. The square 𝐶′ − 𝑦 sits on the square 𝐴1 + 𝑥 if the 

relative interior of the bottom side of 𝐶′ − 𝑦 and the relative interior of the upper 

side of 𝐴1 + 𝑥 have a nonempty intersection. Since: 

+
1

𝑛18 (1 + l0 −
1

n18
)

100 233

1

1 −
1

1 + l0 −
1

n18

< 0.000 019 017 < 𝑙0 
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 (9) 

at most three squares sit on the square 𝐴1 + 𝑥 if 𝑥 is a (small) positive integer. It is 

assumed, that the square 𝐶′ − 𝑦 sits on the square 𝐴1 + 𝑥. Thus 

 (10) 

if 0 < 𝑥 ≤  𝑥1, where 𝑥1 = 350 300 705 (the value of 𝑥1 comes from the Octave). 

By Lemma 1, the square 𝑦1 = 1 958 123 269 sits on the square 𝐴1 + 𝑥1, but 𝑦1 +
1 does not sit on 𝐴1 + 𝑥1. Since: 

 (11) 

at most two squares sit on the square 𝐴1 + 𝑥1 + 𝑥 if 𝑥 is a (small) positive integer. 

It is assumed, that the square 𝑦1 − 𝑦 sits on 𝐴1 + 𝑥1 + 𝑥. Thus: 

 (12) 

 (13) 

if 0 < 𝑥 ≤ 𝑥2, where 𝑥2 = 334 746 954 (the value of 𝑥2 comes from the Octave). 

Since 𝐴1 + 𝑥1 + 𝑥2 > 𝐴, the highest horizontal edge belongs to the square 𝐶′ − 1 

among the squares 𝐵 + 1, …, 𝐶′ − 1. 

Similarly: 

 (14) 

if 0 < 𝑥 ≤  𝐴2 − 𝐴1 − 1  

and 

1
𝐴1

1
𝐶 ′ − 1

= 2.5 … 

1

𝐴1

+
1

𝐶′ − 1
>

1

𝐴1 + 𝑥
+

1

𝐶′ − 1 − 3𝑥
≥

1

𝐴1 + 𝑥

1

𝐶′ − 𝑦
 

1
𝐴1 + 𝑥

1
𝑦1

= 1.4 … 

1

𝐴1

+
1

𝐶′ − 1
>

1

𝐴1 + 𝑥1 + 𝑥
+

1

𝑦1 − 2𝑥
 

≥
1

𝐴1 + 𝑥1 + 𝑥
+

1

𝑦1 − 𝑦
 

1

𝐴2

+
1

𝑛18
′ − 1

>
1

𝐴2 + 𝑥
+

1

𝑛18
′ − 1 − 3𝑥
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 (15) 

if 0 < 𝑥 ≤  𝐶0 − 𝐶′ − 2 

The candidates of the width of the rectangle 𝑅𝑁 are 

1

𝐴2

+
1

𝑛18
′ − 1

= 1.362 005 3 … ⋅ 10−9 

1

𝐴1

+
1

𝐶′ − 1
= 1.363 813 307 19 … ⋅ 10−9 

 (16) 

Thus the width of the rectangle 𝑅𝑁 is 
1

𝐴1
+

1

𝐶′−1
= 1.363 813 307 19 … ⋅ 10−9 

It is necessary to find a place to pack the squares 𝑛100 001 to 𝑛100 251 − 1. 

Let: 

 (17) 

Now: 

 (18) 

for 𝑖 = 100 001, … ,100 250 and let: 

 (19) 

The square 𝑦𝑛 = 1 656 583 751 sits on the square 𝑥𝑛 = 1 615 268 375. (Observe, 

𝑦𝑛 − 1 does not sit on 𝑥𝑛.) Thus: 

 (20) 

1

𝐶′
+

1

𝐷′ − 1
>

1

𝐶′ + 𝑥
+

1

𝐷 − 2𝑥
 

1

𝐴
+

1

𝐶′
 +

1

𝐷 − 1
= 1.363 813 307 18 … ⋅ 10−9 

𝑏1 =
1

𝑛18 (1 + 𝑙0 −
1

𝑛18
)

99 983  = 5.400 354 04 … ⋅  10−11 

1

𝑛𝑖

≤
1

𝑛100 001

<
1

𝑛18 (1 + 𝑙0 −
1

𝑛18
)

99 983 = 𝑏1 

𝑏2 =
1

𝑛100 001

+
1

𝑛100 001 + 1
+ ⋯ +

1

𝑛100 251 − 1
< 250 ⋅  𝑙0 

∑
1

𝑖
 

yn−1

i=B+1

< 250 ⋅  l0 < ∑
1

𝑖
 

yn

i=B+1
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and 

 (21) 

Let: 

 (22) 

Since the highest horizontal edge belongs to the square 𝑦𝑛 among the squares 𝐵 +
1, …, 𝑦𝑛, there is a rectangle 𝑅𝑓 of dimensions 250 ⋅ 𝑙0 × ℎ which has no common 

interior point with the squares up to 𝑛18
′ − 1. Since 𝑏1 < ℎ and 𝑏2 < 250 ⋅ 𝑙0, the 

squares from 𝑛100 001 to 𝑛100 251 − 1 fit in 𝑅𝑓. 

Thus the reciprocal squares are contained in a rectangle of dimensions 

 (23) 

which shows that 𝜖 ≤  6.819 066 535 97 … ⋅ 10−10 

Conclusions 

From the above proof, it should be recognised, that performing difficult calculations 

with the help of computers and/or suitable programs, can be an easy task. Without 

a computer, the calculations on a piece of paper, indeed, take a very long time. 

Calculations with Octave and the two short retval functions, is an easy task. The 

numbers 𝐴, 𝐵, 𝐶, 𝐷 and 𝐸 come from [26]. The numbers 𝐴1, 𝐴2, 𝐶′, 𝐶0, 𝐶1, … , 𝐶18 

and the width of the rectangle 𝑅_𝑁 are calculated with the help of Octave. By 

Lemma 1, the control of round-off errors is achieved. 

The packing question in this paper, for 𝜖, was asked back in 1968, and the question 

is still open. In the papers [26] [27] [29] [30] improved estimates for the value of 𝜖 

can be found, but these estimates were not final, as you can see by the evidence of 

this paper. This short work should inspire authors to closely examine long standing 

mathematical questions, with the help of a computer. 

Acknowledgement 

This work was supported by EFOP-3.6.1-16-2016-00003 funds. Establishment of 

long-term R and D and I processes at the University of Dunaújváros. 

 

∑
1

𝑖
 

A−1

i=xn+1

< 250 ⋅  l0 < ∑
1

𝑖
 

A−1

i=xn

 

ℎ =
1

𝐴1

+
1

𝐶′ − 1
 −

1

𝑥𝑛

 −
1

𝑦𝑛

= 1.410 719 974 85 … ⋅ 10−10 

1

2
× (2 (

𝜋2

6
− 1) + 1.363 813 307 19 … ⋅ 10−9) 
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